Zobrazeno 1 - 10
of 63
pro vyhledávání: '"Weimar, Markus"'
We introduce and analyse a class of weighted Sobolev spaces with mixed weights on angular domains. The weights are based on both the distance to the boundary and the distance to the one vertex of the domain. Moreover, we show how the regularity of th
Externí odkaz:
http://arxiv.org/abs/2409.18615
Autor:
Hovemann, Marc, Weimar, Markus
In this paper we investigate Besov-Morrey spaces $\mathcal{N}^{s}_{u,p,q}(\Omega)$ and Besov-type spaces $B^{s,\tau}_{p,q}(\Omega)$ of positive smoothness defined on Lipschitz domains $\Omega \subset \mathbb{R}^d$ as well as on $\mathbb{R}^d$. We com
Externí odkaz:
http://arxiv.org/abs/2405.20662
Autor:
Hovemann, Marc, Weimar, Markus
In this paper we are concerned with Triebel-Lizorkin-Morrey spaces $\mathcal{E}^{s}_{u,p,q}(\Omega)$ of positive smoothness $s$ defined on (special or bounded) Lipschitz domains $\Omega\subset\mathbb{R}^d$ as well as on $\mathbb{R}^d$. For those spac
Externí odkaz:
http://arxiv.org/abs/2306.15239
The paper is concerned with the sparse approximation of functions having hybrid regularity borrowed from the theory of solutions to electronic Schr\"odinger equations due to Yserentant [43]. We use hyperbolic wavelets to introduce corresponding new s
Externí odkaz:
http://arxiv.org/abs/2203.10011
Autor:
Weimar, Markus
In this note we are concerned with interior regularity properties of the $p$-Poisson problem $\Delta_p(u)=f$ with $p>2$. For all $0<\lambda\leq 1$ we constuct right-hand sides $f$ of differentiability $-1+\lambda$ such that the (Besov-) smoothness of
Externí odkaz:
http://arxiv.org/abs/1907.12805
Publikováno v:
In Applied and Computational Harmonic Analysis July 2023 65:40-66
Autor:
Cioica-Licht, Petru A., Weimar, Markus
We study the interrelation between the limit $L_p(\Omega)$-Sobolev regularity $\overline{s}_p$ of (classes of) functions on bounded Lipschitz domains $\Omega\subseteq\mathbb{R}^d$, $d\geq 2$, and the limit regularity $\overline{\alpha}_p$ within the
Externí odkaz:
http://arxiv.org/abs/1904.04521
The paper is concerned with higher order Calderon-Zygmund estimates for the $p$-Laplace equation $$ -\textrm{div}(A(\nabla u)) := -\textrm{div}{(|\nabla u|^{p-2}\nabla u)}=-\textrm{div} F, \qquad 1
Externí odkaz:
http://arxiv.org/abs/1904.03388
Autor:
Hovemann, Marc, Weimar, Markus
Publikováno v:
Revista Matematica Complutense; Sep2024, Vol. 37 Issue 3, p735-782, 48p
In this paper, we are concerned with the numerical treatment of boundary integral equations by means of the adaptive wavelet boundary element method (BEM). In particular, we consider the second kind Fredholm integral equation for the double layer pot
Externí odkaz:
http://arxiv.org/abs/1610.02265