Zobrazeno 1 - 10
of 92
pro vyhledávání: '"Weikard, Rudi"'
Autor:
Bhardwaj, Varun, Weikard, Rudi
We investigate the limit-point/limit-circle classification for the differential equation $Ju'+qu=\lambda wu$ where $J=\big(\begin{smallmatrix}0&-1\\ 1&0\end{smallmatrix}\big)$ and $q$ and $w$ are matrices whose entries are distributions of order zero
Externí odkaz:
http://arxiv.org/abs/2309.05068
Autor:
Redolfi, Steven, Weikard, Rudi
We study the spectral theory for the first-order system $Ju'+qu=wf$ of differential equations on the real interval $(a,b)$ where $J$ is a constant, invertible, skew-hermitian matrix and $q$ and $w$ are matrices whose entries are distributions of orde
Externí odkaz:
http://arxiv.org/abs/2303.02086
On the spectral theory of systems of first order equations with periodic distributional coefficients
Autor:
Campbell, Kevin, Weikard, Rudi
We establish a Floquet theorem for a first-order system of differential equations $u'=ru$ where $r$ is an $n\times n$-matrix whose entries are periodic distributions of order $0$. Then we investigate, when $n=1$ and $n=2$, the spectral theory for the
Externí odkaz:
http://arxiv.org/abs/2301.07212
Autor:
Redolfi, Steven, Weikard, Rudi
Publikováno v:
Integr. Equ. Oper. Theory 94 (2022)
This paper is a contribution to the spectral theory associated with the differential equation $Ju'+qu=wf$ on the real interval $(a,b)$ when $J$ is a constant, invertible skew-Hermitian matrix and $q$ and $w$ are matrices whose entries are distributio
Externí odkaz:
http://arxiv.org/abs/2301.03521
Publikováno v:
Linear Multilinear Algebra 69 (2021) 2315-2323
We consider the differential equation $Ju'+qu=wf$ on the real interval $(a,b)$ when $J$ is a constant, invertible skew-Hermitian matrix and $q$ and $w$ are matrices whose entries are distributions of order zero with $q$ Hermitian and $w$ non-negative
Externí odkaz:
http://arxiv.org/abs/2301.02339
Autor:
Nguyen, Minh, Weikard, Rudi
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 July 2024 535(1)
Autor:
Redolfi, Steven, Weikard, Rudi
Publikováno v:
In Journal of Functional Analysis 1 May 2024 286(9)
Autor:
Ghatasheh, Ahmed, Weikard, Rudi
In this paper we investigate sign-changing points of nontrivial real-valued solutions of homogeneous Sturm-Liouville differential equations of the form $-d(du/d\alpha)+ud\beta=0$, where $d\alpha$ is a positive Borel measure supported everywhere on $(
Externí odkaz:
http://arxiv.org/abs/1911.02164
Autor:
Ghatasheh, Ahmed, Weikard, Rudi
We study the spectral theory for the first-order system $Ju'+qu=wf$ of differential equations on the real interval $(a,b)$ when $J$ is a constant, invertible skew-Hermitian matrix and $q$ and $w$ are matrices whose entries are distributions of order
Externí odkaz:
http://arxiv.org/abs/1807.09653
Autor:
Ghatasheh, Ahmed, Weikard, Rudi
We give a simple proof of a fairly flexible comparison theorem for equations of the type $-(p(u'+su))'+rp(u'+su)+qu=0$ on a finite interval where $1/p$, $r$, $s$, and $q$ are real and integrable. Flexibility is provided by two functions which may be
Externí odkaz:
http://arxiv.org/abs/1703.06949