Zobrazeno 1 - 10
of 38
pro vyhledávání: '"Weifeng, Wo"'
In this paper, we investigate Hessian curvature hypersurfaces with prescribed Gauss images. Given geodesically strictly convex bounded domains $\Omega$ in $\mathbb{R}^n$ and $\tilde{\Omega}$ in the unit hemisphere, we prove that there is a strictly c
Externí odkaz:
http://arxiv.org/abs/2412.09159
In this paper, we study the $k$-Hessian curvature flow of noncompact spacelike hypersurfaces in Minkowski space. We first prove the existence of translating solutions with given asymptotic behavior. Then, we prove that for strictly convex initial hyp
Externí odkaz:
http://arxiv.org/abs/2409.07301
Publikováno v:
AIMS Mathematics, Vol 6, Iss 8, Pp 8191-8204 (2021)
In this paper, we study the elliptic system of competitive type with nonhomogeneous terms $ \Delta u = u^pv^q+h_1(x) $, $ \Delta v = u^rv^s+h_2(x) $ in $ \Omega $ with two types of boundary conditions: (Ⅰ) $ u = v = +\infty $ and (SF) $ u = +\infty
Externí odkaz:
https://doaj.org/article/ee9b4a7edb3e4d3882f4643851d24cdf
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 45:1641-1656
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 13
Publikováno v:
Mathematical Notes. 109:971-979
In this paper, we study the existence, uniqueness and boundary behavior of positive boundary blow-up solutions to the quasilinear system $$\Delta_{\infty}u=a(x)u^{p}v^{q}$$ , $$\Delta_{\infty}v=b(x)u^{r}v^{s}$$ in a smooth bounded domain $$\Omega\sub
Publikováno v:
Complex Variables and Elliptic Equations. 67:843-855
In this paper, the monotonicity of solutions for fully nonlinear fractional order equations is studied. We establish a narrow region principle in bounded domains. Then using the sliding method, we ...
Publikováno v:
AIMS Mathematics, Vol 6, Iss 8, Pp 8191-8204 (2021)
In this paper, we study the elliptic system of competitive type with nonhomogeneous terms $ \Delta u = u^pv^q+h_1(x) $, $ \Delta v = u^rv^s+h_2(x) $ in $ \Omega $ with two types of boundary conditions: (Ⅰ) $ u = v = +\infty $ and (SF) $ u = +\infty
Publikováno v:
Archiv der Mathematik. 115:99-110
In this paper, we shall investigate a semilinear elliptic boundary blow-up problem $$\Delta u=a(x)|u|^{p-1}u+h(x)$$ in $$\Omega $$ and $$u|_{\partial \Omega }=\infty $$, where $$\Omega $$ is a smooth bounded domain of $$\mathbb {R}^{N}$$. The weight
Publikováno v:
Proceedings of the American Mathematical Society. 147:2661-2671