Zobrazeno 1 - 10
of 215
pro vyhledávání: '"Wei Lee Woon"'
Autor:
Armin Alibasic, Himanshu Upadhyay, Mecit Can Emre Simsekler, Thomas Kurfess, Wei Lee Woon, Mohammed Atif Omar
Publikováno v:
Journal of Big Data, Vol 9, Iss 1, Pp 1-28 (2022)
Abstract Introduction Fast-emerging technologies are making the job market dynamic, causing desirable skills to evolve continuously. It is therefore important to understand the transitions in the job market to proactively identify skill sets required
Externí odkaz:
https://doaj.org/article/96d9e54fc7d34156b2f24ef299546762
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-10 (2018)
Diversity is believed to raise effectiveness and performance but it contains many aspects. Here the authors studied the relationship between research impact and five classes of diversity and found that ethnic diversity had the strongest correlation w
Externí odkaz:
https://doaj.org/article/f9a1cea8f492418395baf7044f79ed0c
Publikováno v:
IEEE Transactions on Industrial Informatics. 18:2078-2088
A multistage approach to passive islanding detection is proposed that utilizes a decision-tree-like classification algorithm. The novelty of the proposed method is centered on the way in which features are passed to subsequent stages of the decision
Autor:
Bijay Neupane1 bj21.neupane@gmail.com, Wei Lee Woon2 wwoon@masdar.ac.ae, Zeyar Aung2 zaung@masdar.ac.ae
Publikováno v:
Energies (19961073). Jan2017, Vol. 10 Issue 1, p77. 27p.
Autor:
Kristin E. Porter, Malte Möser, Flora Wang, Bingyu Zhao, Wei Lee Woon, Yoshihiko Suhara, Adaner Usmani, Erik H. Wang, Kun Jin, Samantha Weissman, William Eggert, Hamidreza Omidvar, Andrew Or, Lisa M Hummel, Gregory Faletto, Ben Sender, Qiankun Niu, Viola Mocz, Antje Kirchner, Catherine Wu, Karen Ouyang, Ian Lundberg, Allison C. Morgan, Abdulla Alhajri, Arvind Narayanan, Khaled AlGhoneim, Louis Raes, Ilana M. Horwitz, Barbara E. Engelhardt, Ben Leizman, Crystal Qian, Drew Altschul, Guanhua He, Jeanne Brooks-Gunn, Ridhi Kashyap, Eaman Jahani, Ryan James Compton, Anna Filippova, Sara McLanahan, Tejomay Gadgil, Claudia V. Roberts, Muna Adem, Julia Wang, Jeremy Freese, Alexander T. Kindel, Daniel E Rigobon, Naijia Liu, Lisa P. Argyle, Mayank Mahajan, Jonathan D Tang, Moritz Hardt, Ethan Porter, Diana Mercado-Garcia, Andrew Halpern-Manners, Anahit Sargsyan, Duncan J. Watts, Alex Pentland, Sonia P Hashim, Dean Knox, Onur Varol, Ryan Amos, James M. Wu, Thomas Davidson, Emma Tsurkov, Bernie Hogan, Areg Karapetyan, William Nowak, Jingwen Yin, Livia Baer-Bositis, Landon Schnabel, Chenyun Zhu, Noah Mandell, Ahmed Musse, Yue Gao, Josh Gagné, Stephen McKay, Jennie E. Brand, Abdullah Almaatouq, Katy M. Pinto, Andrew E Mack, Austin van Loon, Bedoor K. AlShebli, Helge Marahrens, Xiafei Wang, Bryan Schonfeld, Sonia Hausen, Kengran Yang, Maria Wolters, Brandon M. Stewart, Naman Jain, Moritz Büchi, Nicole Bohme Carnegie, Redwane Amin, Caitlin Ahearn, Kirstie Whitaker, Bo-Ryehn Chung, Diana Stanescu, Thomas Schaffner, Patrick Kaminski, David Jurgens, Kivan Polimis, Kimberly Higuera, Zhilin Fan, Matthew J. Salganik, Debanjan Datta, Connor Gilroy, E H Kim, Katariina Mueller-Gastell, Karen Levy, Brian J. Goode, Zhi Wang, Tamkinat Rauf
Publikováno v:
PNAS
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(15), 8398-8403. NATL ACAD SCIENCES
Proc Natl Acad Sci U S A
Salganik, M J, Lundberg, I, Kindel, A T, Ahearn, C E, Al-ghoneim, K, Almaatouq, A, Altschul, D M, Brand, J E, Carnegie, N B, Compton, R J, Datta, D, Davidson, T, Filippova, A, Gilroy, C, Goode, B J, Jahani, E, Kashyap, R, Kirchner, A, Mckay, S, Morgan, A C, Pentland, A, Polimis, K, Raes, L, Rigobon, D E, Roberts, C V, Stanescu, D M, Suhara, Y, Usmani, A, Wang, E H, Adem, M, Alhajri, A, Alshebli, B, Amin, R, Amos, R B, Argyle, L P, Baer-bositis, L, Büchi, M, Chung, B, Eggert, W, Faletto, G, Fan, Z, Freese, J, Gadgil, T, Gagné, J, Gao, Y, Halpern-manners, A, Hashim, S P, Hausen, S, He, G, Higuera, K, Hogan, B, Horwitz, I M, Hummel, L M, Jain, N, Jin, K, Jurgens, D, Kaminski, P, Karapetyan, A, Kim, E H, Leizman, B, Liu, N, Möser, M, Mack, A E, Mahajan, M, Mandell, N, Marahrens, H, Mercado-garcia, D, Mocz, V, Mueller-gastell, K, Musse, A, Niu, Q, Nowak, W, Omidvar, H, Or, A, Ouyang, K, Pinto, K M, Porter, E, Porter, K E, Qian, C, Rauf, T, Sargsyan, A, Schaffner, T, Schnabel, L, Schonfeld, B, Sender, B, Tang, J D, Tsurkov, E, Van Loon, A, Varol, O, Wang, X, Wang, Z, Wang, J, Wang, F, Weissman, S, Whitaker, K, Wolters, M K, Woon, W L, Wu, J, Wu, C, Yang, K, Yin, J, Zhao, B, Zhu, C, Brooks-gunn, J, Engelhardt, B E, Hardt, M, Knox, D, Levy, K, Narayanan, A, Stewart, B M, Watts, D J & Mclanahan, S 2020, ' Measuring the predictability of life outcomes with a scientific mass collaboration ', Proceedings of the National Academy of Sciences, vol. 117, no. 15, pp. 8398-8403 . https://doi.org/10.1073/pnas.1915006117
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(15), 8398-8403. NATL ACAD SCIENCES
Proc Natl Acad Sci U S A
Salganik, M J, Lundberg, I, Kindel, A T, Ahearn, C E, Al-ghoneim, K, Almaatouq, A, Altschul, D M, Brand, J E, Carnegie, N B, Compton, R J, Datta, D, Davidson, T, Filippova, A, Gilroy, C, Goode, B J, Jahani, E, Kashyap, R, Kirchner, A, Mckay, S, Morgan, A C, Pentland, A, Polimis, K, Raes, L, Rigobon, D E, Roberts, C V, Stanescu, D M, Suhara, Y, Usmani, A, Wang, E H, Adem, M, Alhajri, A, Alshebli, B, Amin, R, Amos, R B, Argyle, L P, Baer-bositis, L, Büchi, M, Chung, B, Eggert, W, Faletto, G, Fan, Z, Freese, J, Gadgil, T, Gagné, J, Gao, Y, Halpern-manners, A, Hashim, S P, Hausen, S, He, G, Higuera, K, Hogan, B, Horwitz, I M, Hummel, L M, Jain, N, Jin, K, Jurgens, D, Kaminski, P, Karapetyan, A, Kim, E H, Leizman, B, Liu, N, Möser, M, Mack, A E, Mahajan, M, Mandell, N, Marahrens, H, Mercado-garcia, D, Mocz, V, Mueller-gastell, K, Musse, A, Niu, Q, Nowak, W, Omidvar, H, Or, A, Ouyang, K, Pinto, K M, Porter, E, Porter, K E, Qian, C, Rauf, T, Sargsyan, A, Schaffner, T, Schnabel, L, Schonfeld, B, Sender, B, Tang, J D, Tsurkov, E, Van Loon, A, Varol, O, Wang, X, Wang, Z, Wang, J, Wang, F, Weissman, S, Whitaker, K, Wolters, M K, Woon, W L, Wu, J, Wu, C, Yang, K, Yin, J, Zhao, B, Zhu, C, Brooks-gunn, J, Engelhardt, B E, Hardt, M, Knox, D, Levy, K, Narayanan, A, Stewart, B M, Watts, D J & Mclanahan, S 2020, ' Measuring the predictability of life outcomes with a scientific mass collaboration ', Proceedings of the National Academy of Sciences, vol. 117, no. 15, pp. 8398-8403 . https://doi.org/10.1073/pnas.1915006117
© This open access article is distributed under Creative Commons Attribution-NonCommercialNoDerivatives License 4.0 (CC BY-NC-ND). How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the co
Autor:
Mohammad Atif Omar, Mecit Can Emre Simsekler, Armin Alibasic, Thomas R. Kurfess, Wei Lee Woon
Publikováno v:
Soft Computing. 24:4959-4976
New technologies are emerging on a continual basis with drastic trajectories and wider penetration into the job market. Health care is among the top ten sectors in terms of talent turnover rates. Hence, being proactive—by predicting what skills wil
Publikováno v:
Machine Learning, Optimization, and Data Science ISBN: 9783030645823
LOD (1)
LOD (1)
Academic performance is perceived as a product of complex interactions between students’ overall experience, personal characteristics and upbringing. Data science techniques, most commonly involving regression analysis and related approaches, serve
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1b6eb20e575553b6ac415739ecb9d398
https://doi.org/10.1007/978-3-030-64583-0_24
https://doi.org/10.1007/978-3-030-64583-0_24
Publikováno v:
IEEE Transactions on Power Systems. 33:2429-2439
High concentrations of induction motor loads can impose stress on transmission and distribution systems, leading to voltage instability in some situations. Properly sized and coordinated reactive power sources will provide for improved operation. We
Publikováno v:
Journal of Building Performance Simulation. 11:322-332
Tree-based ensemble learning has received significant interest as one of the most reliable and broadly applicable classes of machine learning techniques. However, thus far, it has rarely been used to model and evaluate the drivers of energy consumpti
Autor:
Frank MacCrory, Armin Alibasic, Wala AlKhader, Wei Lee Woon, Zeyar Aung, Mohammad Atif Omar, Ioannis Karakatsanis
Publikováno v:
Information Systems. 65:1-6
In challenging economic times, the ability to monitor trends and shifts in the job market would be hugely valuable to job-seekers, employers, policy makers and investors. To analyze the job market, researchers are increasingly turning to data science