Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Weißer, Steffen"'
Autor:
Antonietti, Paola Francesca, Berrone, Stefano, Borio, Andrea, D'Auria, Alessandro, Verani, Marco, Weisser, Steffen
We derive an anisotropic a posteriori error estimate for the adaptive conforming Virtual Element approximation of a paradigmatic two-dimensional elliptic problem. In particular, we introduce a quasi-interpolant operator and exploit its approximation
Externí odkaz:
http://arxiv.org/abs/2001.00381
We present a Trefftz-type finite element method on meshes consisting of curvilinear polygons. Local basis functions are computed using integral equation techniques that allow for the efficient and accurate evaluation of quantities needed in the forma
Externí odkaz:
http://arxiv.org/abs/1906.09015
This paper presents a grid-free simulation algorithm for the fully three-dimensional Vlasov--Poisson system for collisionless electron plasmas. We employ a standard particle method for the numerical approximation of the distribution function. Whereas
Externí odkaz:
http://arxiv.org/abs/1811.03404
Autor:
Weißer, Steffen
New interpolation and quasi-interpolation operators of Cl\'ement- and Scott-Zhang-type are analyzed on anisotropic polygonal and polyhedral meshes. Since no reference element is available, an appropriate linear mapping to a reference configuration pl
Externí odkaz:
http://arxiv.org/abs/1710.10505
We consider families of finite elements on polygonal meshes, that are defined implicitly on each mesh cell as solutions of local Poisson problems with polynomial data. Functions in the local space on each mesh cell are evaluated via Nystr\"om discret
Externí odkaz:
http://arxiv.org/abs/1708.07323
Autor:
Weißer, Steffen
Only a few numerical methods can treat boundary value problems on polygonal and polyhedral meshes. The BEM-based Finite Element Method is one of the new discretization strategies, which make use of and benefits from the flexibility of these general m
Externí odkaz:
http://arxiv.org/abs/1511.08993
We present a new discretization method for homogeneous convection-diffusion-reaction boundary value problems in 3D that is a non-standard finite element method with PDE-harmonic shape functions on polyhedral elements. The element stiffness matrices a
Externí odkaz:
http://arxiv.org/abs/1502.05954
Publikováno v:
In Computers and Mathematics with Applications 1 June 2018 75(11):3971-3986
Autor:
Weißer, Steffen
Publikováno v:
In Computers and Mathematics with Applications 15 January 2017 73(2):187-202