Zobrazeno 1 - 10
of 103
pro vyhledávání: '"Wei, Mingquan"'
Let $X$ be a ball quasi-Banach function space, $\alpha\in \mathbb{R}$ and $q\in(0,\infty)$. In this paper, the authors first introduce the new Herz-type Hardy spaces $\mathcal{H\dot{K}}_{X}^{\alpha,\,q}({\mathbb {R}}^n)$ and $\mathcal{HK}_{X}^{\alpha
Externí odkaz:
http://arxiv.org/abs/2310.12271
Autor:
Wei, Mingquan, Yan, Dunyan
Let $\alpha\in{\Bbb R}$, $0
Externí odkaz:
http://arxiv.org/abs/2209.04323
Autor:
Wei, Mingquan, Yan, Dunyan
In this paper, by using the rotation method, we calculate that the sharp bound for $n$-dimensional Hardy operator $\mathcal{H}$ on mixed radial-angular spaces. Furthermore, we also obtain the sharp bound for $n$-dimensional fractional Hardy operator
Externí odkaz:
http://arxiv.org/abs/2207.14570
The purpose of this paper is to introduce and investigate some basic properties of mixed homogeneous Herz-Hardy spaces $H\dot{K}_{\vec{p}}^{\alpha, q}(\mathbb{R}^n)$ and mixed non-homogeneous Herz-Hardy spaces $HK_{\vec{p}}^{\alpha, q}(\mathbb{R}^n)$
Externí odkaz:
http://arxiv.org/abs/2205.10372
Autor:
Wei, Mingquan
In this paper, we study the boundedness for a large class of multi-sublinear operators $T_m$ generated by multilinear Calder{\'o}n-Zygmund operators and their commutators $T^{b}_{m,i}~(i=1,\cdots,m)$ on the product generalized mixed Morrey spaces $M^
Externí odkaz:
http://arxiv.org/abs/2203.04720
This paper focuses on the operator norm of the truncated Hardy-Littlewood maximal operator $M^b_a$ and the strong truncated Hardy-Littlewood maximal operator $\tilde{M}^{\boldsymbol{b}}_{\boldsymbol{a}}$, respectively. We first present the $L^1$-norm
Externí odkaz:
http://arxiv.org/abs/2110.13493
Autor:
Wei, Mingquan
In this paper, the author studies the boundedness for a large class of sublinear operator $T_\alpha, \alpha\in[0,n)$ generated by Calder{\'o}n-Zygmund operators ($\alpha=0$) and generated by fractional integral operator ($\alpha>0$) on generalized mi
Externí odkaz:
http://arxiv.org/abs/2106.12872
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Weighted estimates for bilinear fractional integral operators and their commutators on Morrey spaces
This paper mainly dedicates to prove a plethora of weighted estimates on Morrey spaces for bilinear fractional integral operators and their general commutators with BMO functions of the form $$B_{\alpha}(f,g)(x)=\int_{\mathbb{R}^{n}}\frac{f(x-y)g(x+y
Externí odkaz:
http://arxiv.org/abs/1905.10946
Publikováno v:
Open Mathematics, Vol 20, Iss 1, Pp 1288-1295 (2022)
In this article, a generalization of the well-known Stein-Weiss inequality for the fractional integral operator on functions with different integrability properties in the radial and the angular direction in local Morrey spaces is established. We fin
Externí odkaz:
https://doaj.org/article/f5750d78549d48c88e1da26d0bd0ed9f