Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Wehrli, Stephan"'
Autor:
Migdail, Jacob, Wehrli, Stephan
We extend the generalized Khovanov bracket to smooth link cobordisms in $\mathbb{R}^3\times I$ and prove that the resulting theory is functorial up to global invertible scalars. The generalized Khovanov bracket can be specialized to both even and odd
Externí odkaz:
http://arxiv.org/abs/2410.23455
We show that the Khovanov and Cooper-Krushkal models for colored sl(2) homology are equivalent in the case of the unknot, when formulated in the quantum annular Bar-Natan category. Again for the unknot, these two theories are shown to be equivalent t
Externí odkaz:
http://arxiv.org/abs/2305.02977
Autor:
Necheles, Casey L., Wehrli, Stephan M.
We introduce two monoidal supercategories: the odd dotted Temperley-Lieb category $\mathcal{T\!L}_{o,\bullet}(\delta)$, which is a generalization of the odd Temperley-Lieb category studied by Brundan and Ellis, and the odd annular Bar-Natan category
Externí odkaz:
http://arxiv.org/abs/2206.01892
Publikováno v:
Algebr. Geom. Topol. 23 (2023) 1303-1361
We construct an explicit equivalence between the (bi)category of gl(2) webs and foams and the Bar-Natan (bi)category of Temperley-Lieb diagrams and cobordisms. With this equivalence we can fix functoriality of every link homology theory that factors
Externí odkaz:
http://arxiv.org/abs/1903.12194
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We define an annular version of odd Khovanov homology and prove that it carries an action of the Lie superalgebra $\mathfrak{gl}(1|1)$ which is preserved under annular Reidemeister moves.
Comment: 20 pages, 4 figures
Comment: 20 pages, 4 figures
Externí odkaz:
http://arxiv.org/abs/1806.05718
We prove that the Khovanov-Lee complex of an oriented link, L, in a thickened annulus, A x I, has the structure of a bifiltered complex whose filtered chain homotopy type is an invariant of the isotopy class of L in A x I. Using ideas of Ozsvath-Stip
Externí odkaz:
http://arxiv.org/abs/1612.05953
Motivated by topology, we develop a general theory of traces and shadows for an endobicategory, which is a~pair: bicategory $\mathbf{C}$ and endobifunctor $\Sigma\colon \mathbf C \to\mathbf C$. For a graded linear bicategory and a fixed invertible pa
Externí odkaz:
http://arxiv.org/abs/1605.03523
Autor:
Doig, Margaret, Wehrli, Stephan
It follows implicitly from recent work in Heegaard Floer theory that lens spaces are homology cobordant exactly when they are oriented homeomorphic. We provide a new combinatorial proof using the Heegaard Floer d-invariants, which themselves may be d
Externí odkaz:
http://arxiv.org/abs/1505.06970
Publikováno v:
Compositio Math. 154 (2018) 459-502
Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular K
Externí odkaz:
http://arxiv.org/abs/1505.04386