Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Wehefritz, Birgit"'
Autor:
Bilstein, Ulrich, Wehefritz, Birgit
Publikováno v:
J. Phys. A 32 (1999) 191-233
This is the first of three papers dealing with the XX finite quantum chain with arbitrary, not necessarily hermitian, boundary terms. This extends previous work where the periodic or diagonal boundary terms were considered. In order to find the spect
Externí odkaz:
http://arxiv.org/abs/cond-mat/9807166
Autor:
Bilstein, Ulrich, Wehefritz, Birgit
Publikováno v:
J. Phys. A 30 (1997) 4925
The spectrum of the non-hermitian asymmetric XXZ-chain with additional non-diagonal boundary terms is studied. The lowest lying eigenvalues are determined numerically. For the ferromagnetic and completely asymmetric chain that corresponds to a reacti
Externí odkaz:
http://arxiv.org/abs/cond-mat/9611163
Publikováno v:
Nucl.Phys.B493:541-570,1997
We consider the asymmetric six--vertex model, {\it i.e.} the symmetric six--vertex model in an external field with both horizontal and vertical components, and the relevant asymmetric $XXZ$ chain. The model is widely used to describe the equilibrium
Externí odkaz:
http://arxiv.org/abs/cond-mat/9606137
Publikováno v:
J.Phys.A29:L369-L376,1996
The low-lying excitations of the asymmetric $XXZ$ spin chain are derived explicitly in the antiferromagnetic regime through the Bethe Ansatz. It is found that a massless and conformal invariant phase with central charge $c=1$ is separated from a mass
Externí odkaz:
http://arxiv.org/abs/cond-mat/9509026
The scaling exponent and scaling function for the 1D single species coagulation model $(A+A\rightarrow A)$ are shown to be universal, i.e. they are not influenced by the value of the coagulation rate. They are independent of the initial conditions as
Externí odkaz:
http://arxiv.org/abs/cond-mat/9402019
We consider the coagulation-decoagulation model on an one-dimensional lattice of length $L$ with open boundary conditions. Based on the empty interval approach the time evolution is described by a system of $\frac{L(L+1)}{2}$ differential equations w
Externí odkaz:
http://arxiv.org/abs/cond-mat/9402018
The finite-size scaling function and the leading corrections for the single species 1D coagulation model $(A + A \rightarrow A)$ and the annihilation model $(A + A \rightarrow \emptyset)$ are calculated. The scaling functions are universal and indepe
Externí odkaz:
http://arxiv.org/abs/cond-mat/9402017
Publikováno v:
Journal of Statistical Physics; March 1995, Vol. 78 Issue: 5-6 p1429-1470, 42p
Publikováno v:
Journal of Statistical Physics; March 1995, Vol. 78 Issue: 5-6 p1471-1491, 21p
Autor:
Bilstein, Ulrich, Wehefritz, Birgit
Publikováno v:
Journal of Physics: A Mathematical & General; 1/15/1999, Vol. 32 Issue 2, p1-1, 1p