Zobrazeno 1 - 10
of 379
pro vyhledávání: '"Weber, Claude"'
Autor:
Audrey Higelin Cruz
Publikováno v:
Terrains/Théories, Vol 17 (2023)
Externí odkaz:
https://doaj.org/article/90330bcc091f45c092cfaf6b521758d3
Autor:
Michel, Françoise, Weber, Claude
In the article we give a self-contained new proof that a normal quasi-ordinary surface germ is analytically isomorphic to a cyclic quotient surface germ.
Externí odkaz:
http://arxiv.org/abs/2410.20387
This article is devoted to the study of prime alternating +achiral knots. In the case of arborescent knots, we prove in +AAA Visibility Theorem 5.1, that the symmetry is visible on a certain projection (not necessarily minimal) and that it is realise
Externí odkaz:
http://arxiv.org/abs/1503.01897
Autor:
MOORE, ROBERT A.
Publikováno v:
American Record Guide. Sep/Oct2019, Vol. 82 Issue 5, p68-69. 2p.
Autor:
Michel, Francoise, Weber, Claude
We present Michel Kervaire work on knots in higher dimensions.
Externí odkaz:
http://arxiv.org/abs/1409.0704
We give a counterexample to the Kawauchi conjecture on the Conway polynomial of achiral knots which asserts that the Conway polynomial $C(z)$ of an achiral knot satisfies the splitting property $C(z)=F(z)F(-z)$ for a polynomial $F(z)$ with integer co
Externí odkaz:
http://arxiv.org/abs/1106.5634
Malnormal subgroups occur in various contexts. We review a large number of examples, and we compare the situation in this generality to that of finite Frobenius groups of permutations. In a companion paper [HaWe], we analyse when peripheral subgroups
Externí odkaz:
http://arxiv.org/abs/1104.3065
Autor:
de la Harpe, Pierre, Weber, Claude
Let $K$ be a non-trivial knot in the 3-sphere, $E_K$ its exterior, $G_K = \pi_1(E_K)$ its group, and $P_K = \pi_1(\partial E_K) \subset G_K$ its peripheral subgroup. We show that $P_K$ is malnormal in $G_K$, namely that $gP_Kg^{-1} \cap P_K = \{e\}$
Externí odkaz:
http://arxiv.org/abs/1104.3062
In this paper we are interested in symmetries of alternating knots, more precisely in those related to achirality. We call the following statement Tait's Conjecture on alternating -achiral knots: Let K be an alternating -achiral knot. Then there exis
Externí odkaz:
http://arxiv.org/abs/1103.3203