Zobrazeno 1 - 10
of 693
pro vyhledávání: '"Wayne, Luk"'
Publikováno v:
Journal of Big Data, Vol 10, Iss 1, Pp 1-28 (2023)
Abstract Processing large-scale graphs is challenging due to the nature of the computation that causes irregular memory access patterns. Managing such irregular accesses may cause significant performance degradation on both CPUs and GPUs. Thus, recen
Externí odkaz:
https://doaj.org/article/23c388678710405cacce6a11848c3aa6
Publikováno v:
Array, Vol 20, Iss , Pp 100323- (2023)
Neuromorphic event-driven systems emulate the computational mechanisms of the brain through the utilization of spiking neural networks (SNN). Neuromorphic systems serve two primary application domains: simulating neural information processing in neur
Externí odkaz:
https://doaj.org/article/35e73c6fe65b4cbab1020b9c51399069
Autor:
Mark Vousden, Jordan Morris, Graeme McLachlan Bragg, Jonathan Beaumont, Ashur Rafiev, Wayne Luk, David Thomas, Andrew Brown
Publikováno v:
IET Computers & Digital Techniques, Vol 17, Iss 1, Pp 29-42 (2023)
Abstract This paper introduces an event‐based computing paradigm, where workers only perform computation in response to external stimuli (events). This approach is best employed on hardware with many thousands of smaller compute cores with a fast,
Externí odkaz:
https://doaj.org/article/82d108331cbc4692b358a5cb24a5fac3
Autor:
Bastien Lecoeur, Marco Barbone, Jessica Gough, Uwe Oelfke, Wayne Luk, Georgi Gaydadjiev, Andreas Wetscherek
Publikováno v:
Physics and Imaging in Radiation Oncology, Vol 27, Iss , Pp 100484- (2023)
Background and purpose: Physiological motion impacts the dose delivered to tumours and vital organs in external beam radiotherapy and particularly in particle therapy. The excellent soft-tissue demarcation of 4D magnetic resonance imaging (4D-MRI) co
Externí odkaz:
https://doaj.org/article/dbb7e8c0102743dd8cb22445868b5d13
Autor:
Patrick Odagiu, Zhiqiang Que, Javier Duarte, Johannes Haller, Gregor Kasieczka, Artur Lobanov, Vladimir Loncar, Wayne Luk, Jennifer Ngadiuba, Maurizio Pierini, Philipp Rincke, Arpita Seksaria, Sioni Summers, Andre Sznajder, Alexander Tapper, Thea K Årrestad
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 3, p 035017 (2024)
Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the inpu
Externí odkaz:
https://doaj.org/article/4541642a69904f4eb05a8f8a4651282e
Publikováno v:
BMC Bioinformatics, Vol 21, Iss 1, Pp 1-12 (2020)
Abstract Background Current popular variant calling pipelines rely on the mapping coordinates of each input read to a reference genome in order to detect variants. Since reads deriving from variant loci that diverge in sequence substantially from the
Externí odkaz:
https://doaj.org/article/1b2f4630c19f4d3798a00a7143e9bbde
Publikováno v:
Journal of Data and Information Quality. 15:1-24
Social media networks have drastically changed how people communicate and seek information. Due to the scale of information on these platforms, newsfeed curation algorithms have been developed to sort through this information and curate what users se
Autor:
Mark Vousden, Jordan Morris, Graeme McLachlan Bragg, Jonathan Beaumont, Ashur Rafiev, Wayne Luk, David Thomas, Andrew Brown
Publikováno v:
IET Computers & Digital Techniques. 17:29-42
Autor:
Galen Aymar, Tobias Becker, Stewart Boogert, Marco Borghesi, Robert Bingham, Ceri Brenner, Philip N. Burrows, Oliver C. Ettlinger, Titus Dascalu, Stephen Gibson, Timothy Greenshaw, Sylvia Gruber, Dorothy Gujral, Claire Hardiman, Jonathan Hughes, W. G. Jones, Karen Kirkby, Ajit Kurup, Jean-Baptiste Lagrange, Kenneth Long, Wayne Luk, John Matheson, Paul McKenna, Ruth McLauchlan, Zulfikar Najmudin, Hin T. Lau, Jason L. Parsons, Jaroslaw Pasternak, Juergen Pozimski, Kevin Prise, Monika Puchalska, Peter Ratoff, Giuseppe Schettino, William Shields, Susan Smith, John Thomason, Stephen Towe, Peter Weightman, Colin Whyte, Rachel Xiao
Publikováno v:
Frontiers in Physics, Vol 8 (2020)
The “Laser-hybrid Accelerator for Radiobiological Applications,” LhARA, is conceived as a novel, flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to a
Externí odkaz:
https://doaj.org/article/eed3e14fef5f49e6bb894a5328243a2a
Publikováno v:
IEEE Transactions on Neural Networks and Learning Systems. 33:3974-3987
Due to the huge success and rapid development of convolutional neural networks (CNNs), there is a growing demand for hardware accelerators that accommodate a variety of CNNs to improve their inference latency and energy efficiency, in order to enable