Zobrazeno 1 - 10
of 172
pro vyhledávání: '"Wassell, I."'
In this paper we concentrate on rate-1/3 systematic parallel concatenated convolutional codes and their rate-1/2 punctured child codes. Assuming maximum-likelihood decoding over an additive white Gaussian channel, we demonstrate that a rate-1/2 non-s
Externí odkaz:
http://arxiv.org/abs/cs/0701065
In this paper, we investigate in detail the performance of turbo codes in quasi-static fading channels both with and without antenna diversity. First, we develop a simple and accurate analytic technique to evaluate the performance of turbo codes in q
Externí odkaz:
http://arxiv.org/abs/cs/0508057
Publikováno v:
IMDEA Networks Institute Digital Repository
instname
instname
Recently, the topic of indoor outdoor detection (IOD) has seen its popularity increase, as IOD models can be leveraged to augment the performance of numerous Internet of Things and other applications. IOD aims at distinguishing in an efficient manner
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5baba41aff6b39a1c9ae9e4a18ab5c63
https://hdl.handle.net/20.500.12761/1607
https://hdl.handle.net/20.500.12761/1607
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Scopus-Elsevier
Many machine learning and signal processing tasks involve computing sparse representations using an overcomplete set of features or basis vectors, with compressive sensing-based applications a notable example. While traditionally such problems have b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c229c4d2475df5ac2f8a193a584a48c
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 32
Scene recognition remains one of the most challenging problems in image understanding. With the help of fully connected layers (FCL) and rectified linear units (ReLu), deep networks can extract the moderately sparse and discriminative feature represe
© Springer International Publishing AG 2016. Dictionary learning has been successfully applied in image classification. However, many dictionary learning methods that encode only a single image at a time while training, ignore correlation and other
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b235ac175997ad67db521d9fd9a03e6b
Autor:
Feng, Z, Wassell, I
Publikováno v:
2017 Wireless Days.
In this paper, we investigate channel sensing and power control problems in a cluster-based cognitive radio wireless sensor network (CRWSN). We first propose three channel sensing algorithms to solve the channel sensing problem including availability