Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Warren E. Ferguson"'
Publikováno v:
IEEE Transactions on Computers. 67:449-456
We present a generic digit serial method (DSM) to compute the digits of a real number $V$ . Bounds on these digits, and on the errors in the associated estimates of $V$ formed from these digits, are derived. To illustrate our results, we derive such
Publikováno v:
IEEE Symposium on Computer Arithmetic
Back in the 60's Goldschmidt presented a variation of Newton-Raphson iterations for division that is well suited for pipelining. The problem in using Goldschmidt's division algorithm is to present an error analysis that enables one to save hardware b
Autor:
Ricardo Morin, Alex Fit-Florea, Anthony Wood, Marius Cornea, Marc Daumas, Jason Riedy, Steven R. Carlough, Stuart Oberman, Jon Okada, Paul Zimmermann, Tom Pittman, John Hauser, Chris N. Hinds, Chip Freitag, Mahesh Bhat, Graydon Hoare, Matthew Applegate, M. F. Cowlishaw, David Bindel, Sylvie Boldo, Chuck Stevens, David H. Bailey, James W. Thomas, Stephen Canon, Don Senzig, Umit Yalcinalp, Yozo Hida, David Scott, Brandon Thompson, Pamela J. Taylor, Michel Hack, Jeff Kidder, Laurent Fournier, Richard J. Fateman, Ron Smith, Neil Toda, Liang Wang, David Gustafson, Ivan Godard, Plamen Koev, Craig Nelson, Roger A. Golliver, Ren-Cang Li, Rick James, J. P. Fasano, John Kapernick, David W. Matula, Ian Ollmann, Michael Siu, Peter Markstein, Jerry Huck, Dileep Bhandarkar, John H. Crawford, Peter Tang, Dan Zuras, Mark A. Erle, Scott Westbrook, Fred Zemke, Warren E. Ferguson, Raymond Mak, David G. Hough, Wendy Thrash, David V. James, Guillaume Melquiond, Steve Winkler, Richard Karpinski, Mark Davis, Zhishun A. Liu, James Demmel, Bob Davis, Eric Feng, Leonard Tsai, Steve Bass, William Kahan, Michael Parks, Jim Hull, John R. Harrison, Nobuyoshi Mori, Fred Tydeman, Dick Delp, Joseph D. Darcy, Debjit Das Sarma, Eric M. Schwarz, Ilya Sharapov, Ned Nedialkov, Eric Postpischil, Michael Ingrassia, Son Dao Trong, Jim Shearer, Charles Tsen, Alex Aiken, Hossam A. H. Fahmy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fc6e5cdbb221dff0bdcb314ff3a21cd9
https://doi.org/10.1109/ieeestd.2008.4610935
https://doi.org/10.1109/ieeestd.2008.4610935
Autor:
Warren E. Ferguson
Publikováno v:
IEEE Symposium on Computer Arithmetic
Results are presented that identify when the computed value of a sum or difference is exact. The accuracy of an argument reduction algorithm is analyzed using these results. This analysis demonstrates that catastrophic cancellation does not occur in
Autor:
Jr. Warren E Ferguson
Publikováno v:
SIAM Journal on Numerical Analysis. 23:297-303
This paper determines the rate of convergence of a class of block Jacobi iterative schemes when the schemes are applied to a general class of problems. Among these iterative schemes are the q-line and q-plane block Jacobi schemes, while the general c
Autor:
Warren E. Ferguson, Nira Dyn
Publikováno v:
Mathematics of Computation. 41:165-170
This paper proves that a large class of iterative schemes can be used to solve a certain constrained minimization problem. The constrained minimization problem considered involves the minimization of a quadratic functional subject to linear equality
Publikováno v:
Journal of Fluid Mechanics. 83:49-74
Results of an experimental investigation of the evolution of a nonlinear wave train on deep water are reported. The initial stage of evolution is found to be characterized by exponential growth of a modulational instability, as was first discovered b
Autor:
Warren E. Ferguson
Publikováno v:
Mathematics of Computation. 35:1203-1220
The spectral properties of Jacobi and periodic Jacobi matrices are analyzed and algorithms for the construction of Jacobi and periodic Jacobi matrices with prescribed spectra are presented. Numerical evidence demonstrates that these algorithms are of
Autor:
Jr. Warren E Ferguson
Publikováno v:
SIAM Journal on Numerical Analysis. 23:940-947
Consider as $\varepsilon \to 0^ + $, the solution \[ y(x) = {{\{ {1 - \exp ({{ - x} / \varepsilon })} \}} / {\{ {1 - \exp ({{ - 1} / \varepsilon })} \}}} \] of the following singularly-perturbed linear two-point boundary-value problem \[\varepsilon y
Autor:
Warren E. Ferguson
Publikováno v:
Computers & Mathematics with Applications. (6):401-411
A simple derivation of Glassman's general N fast Fourier transform, and corresponding FORTRAN program, is presented. This fast Fourier transform is based upon a representation of the discrete Fourier transform matrix as a product of sparse matrices.