Zobrazeno 1 - 10
of 464
pro vyhledávání: '"Wang Xiangsheng"'
Let $(M,g^{TM})$ be an odd dimensional ($\dim M\geq 3$) connected oriented noncompact complete spin Riemannian manifold. Let $k^{TM}$ be the associated scalar curvature. Let $f:M\to S^{\dim M}(1)$ be a smooth area decreasing map which is locally cons
Externí odkaz:
http://arxiv.org/abs/2404.18153
Autor:
Wang, Xiangsheng
Publikováno v:
Proc. Amer. Math. Soc. 151 (2023), 4983-4990
The $\mathrm{K}$-cowaist $\text{K-cw}_2 (M)$ and the $\hat{\mathsf{A}}$-cowaist $\hat{\mathrm{A}}$-$\mathrm{cw}_2 (M)$ are two interesting invariants on a manifold $M$, which are closely related to the existence of the positive scalar curvature metri
Externí odkaz:
http://arxiv.org/abs/2309.00352
For a compact spin Riemannian manifold $(M,g^{TM})$ of dimension $n$ such that the associated scalar curvature $k^{TM}$ verifies that $k^{TM}\geqslant n(n-1)$, Llarull's rigidity theorem says that any area-decreasing smooth map $f$ from $M$ to the un
Externí odkaz:
http://arxiv.org/abs/2306.06906
Autor:
Wang, Xiangsheng
For the moduli space of the punctured spheres, we find a new equality between two symplectic forms defined on it. Namely, by treating the elements of this moduli space as the singular Euclidean metrics on a sphere, we give an interpretation of the co
Externí odkaz:
http://arxiv.org/abs/2209.10842
Medical data involves a large amount of personal information and is highly privacy sensitive. In the age of big data, the increasing informatization of healthcare makes it vital that medical information is stored securely and accurately. However, cur
Externí odkaz:
http://arxiv.org/abs/2207.06102
Autor:
Wang, Xiangsheng, Zhang, Weiping
Publikováno v:
Chin. Ann. Math. Ser. B, 43(6), 2022, 1143-1146
Let $W$ be a closed area enlargeable manifold in the sense of Gromov-Lawson and $M$ be a noncompact spin manifold, we show that the connected sum $M\# W$ admits no complete metric of positive scalar curvature. When $W=T^n$, this provides a positive a
Externí odkaz:
http://arxiv.org/abs/2204.09184
To combine a feedforward neural network (FNN) and Lie group (symmetry) theory of differential equations (DEs), an alternative artificial NN approach is proposed to solve the initial value problems (IVPs) of ordinary DEs (ODEs). Introducing the Lie gr
Externí odkaz:
http://arxiv.org/abs/2203.03479
Autor:
Su, Guangxiang, Wang, Xiangsheng
Let $(M,F)$ be a connected (not necessarily compact) foliated manifold carrying a complete Riemannian metric $g^{TM}$. We generalize Gromov's $\mathrm{K}$-cowaist using the coverings of $M$, as well as defining a closely related concept called $\wide
Externí odkaz:
http://arxiv.org/abs/2107.08354
Publikováno v:
J. reine angew. Math. 790 (2022), 85-113
Let $(M,g^{TM})$ be a noncompact complete Riemannian manifold of dimension $n$, and let $F\subseteq TM$ be an integrable subbundle of $TM$. Let $g^F=g^{TM}|_{F}$ be the restricted metric on $F$ and let $k^F$ be the associated leafwise scalar curvatur
Externí odkaz:
http://arxiv.org/abs/2104.03472
Publikováno v:
In Chinese Journal of Aeronautics March 2024 37(3):77-91