Zobrazeno 1 - 10
of 43
pro vyhledávání: '"Wang, Zhengpan"'
Leavitt inverse semigroups of directed finite graphs are related to Leavitt graph algebras of (directed) graphs. Leavitt path algebras of graphs have the natural $\mathbb Z$-grading via the length of paths in graphs. We consider the $\mathbb Z$-gradi
Externí odkaz:
http://arxiv.org/abs/2412.08919
Each quiver corresponds to a path semigroup, and such a path semigroup also corresponds to an associative K-algebra over an algebraically closed field K. Let Q be a quiver and S_Q, KQ be its path semigroup, path algebra, respectively. In this paper,
Externí odkaz:
http://arxiv.org/abs/2303.17226
Let {\Gamma} be a directed graph and Inv({\Gamma}) be the graph inverse semigroup of {\Gamma}. Luo and Wang [7] showed that the congruence lattice C(Inv({\Gamma})) of any graph inverse semigroup Inv({\Gamma}) is upper semimodular, but not lower semim
Externí odkaz:
http://arxiv.org/abs/2303.15797
Autor:
Luo, Yongle, Wang, Zhengpan
Congruences on a graph inverse semigroup were recently described in terms of the underline graph. Based on such descriptions, we show that the lattice of congruences on a graph inverse semigroup is upper semimodular but not lower semimodular.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2006.15745
Autor:
Meakin, John, Wang, Zhengpan
We study two classes of inverse semigroups built from directed graphs, namely graph inverse semigroups and a new class of semigroups that we refer to as Leavitt inverse semigroups. These semigroups are closely related to graph $C^*$-algebras and Leav
Externí odkaz:
http://arxiv.org/abs/1911.00590
We investigate the rigidity for the Hopf algebra ${\rm QSym}$ of quasisymmetric functions with respect to the monomial, the fundamental and the quasisymmetric Schur basis, respectively. By establishing some combinatorial properties of the posets of c
Externí odkaz:
http://arxiv.org/abs/1712.06499
Publikováno v:
In Advances in Mathematics 25 June 2021 384
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Electromagnetic Waves & Applications; 2024, Vol. 38 Issue 2, p151-169, 19p
Autor:
Meakin, John1 (AUTHOR) jmeakin@unl.edu, Wang, Zhengpan2 (AUTHOR)
Publikováno v:
Semigroup Forum. Feb2021, Vol. 102 Issue 1, p217-234. 18p.