Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Wang, D. G. L."'
We introduce path-conjoined graphs defined for two rooted graphs by joining their roots with a path, and investigate the chromatic symmetric functions of its two generalizations: spider-conjoined graphs and chain-conjoined graphs. By using the compos
Externí odkaz:
http://arxiv.org/abs/2406.01418
We consider the sequence of polynomials $W_n(x)$ defined by the recursion $W_n(x)=(ax+b)W_{n-1}(x)+dW_{n-2}(x)$, with initial values $W_0(x)=1$ and $W_1(x)=t(x-r)$, where $a,b,d,t,r$ are real numbers, $a,t>0$, and $d<0$. We show that every polynomial
Externí odkaz:
http://arxiv.org/abs/1503.05404
This paper is concerned with the distribution in the complex plane of the roots of a polynomial sequence $\{W_n(x)\}_{n\ge0}$ given by a recursion $W_n(x)=aW_{n-1}(x)+(bx+c)W_{n-2}(x)$, with $W_0(x)=1$ and $W_1(x)=t(x-r)$, where $a>0$, $b>0$, and $c,
Externí odkaz:
http://arxiv.org/abs/1501.06107
A Ringel ladder can be formed by a self-bar-amalgamation operation on a symmetric ladder, that is, by joining the root vertices on its end-rungs. The present authors have previously derived criteria under which linear chains of copies of one or more
Externí odkaz:
http://arxiv.org/abs/1501.06106
We prove that the genus polynomials of the graphs called iterated claws are real-rooted. This continues our work directed toward the 25-year-old conjecture that the genus distribution of every graph is log-concave. We have previously established log-
Externí odkaz:
http://arxiv.org/abs/1501.06105
Autor:
Wang, D. G. L.1,2 (AUTHOR) glw@bit.edu.cn, Zhang, J. J. R.1 (AUTHOR)
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. Mar2021, Vol. 44 Issue 2, p785-803. 19p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.