Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Wanderson D DaRocha"'
Autor:
Gustavo C Cerqueira, Wanderson D DaRocha, Priscila C Campos, Cláudia S Zouain, Santuza MR Teixeira
Publikováno v:
Memorias do Instituto Oswaldo Cruz, Vol 100, Iss 4, Pp 385-389 (2005)
A total of 880 expressed sequence tags (EST) originated from clones randomly selected from a Trypanosoma cruzi amastigote cDNA library have been analyzed. Of these, 40% (355 ESTs) have been identified by similarity to sequences in public databases an
Externí odkaz:
https://doaj.org/article/d3df67858fa74225b64081117f31d477
Autor:
Daniella Castanheira Bartholomeu, Rita Marcia Cardoso de Paiva, Tiago A O Mendes, Wanderson D DaRocha, Santuza M R Teixeira
Publikováno v:
PLoS Pathogens, Vol 10, Iss 12, p e1004399 (2014)
Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intra
Externí odkaz:
https://doaj.org/article/460e9090f5854806a0cfcf0b8ce2aac8
Autor:
Vivian T Martins, Miguel A Chávez-Fumagalli, Lourena E Costa, Adriana M C Canavaci, Paula S Lage, Daniela P Lage, Mariana C Duarte, Diogo G Valadares, Rubens D M Magalhães, Tatiana G Ribeiro, Ronaldo A P Nagem, Wanderson D Darocha, Wiliam C B Régis, Manuel Soto, Eduardo A F Coelho, Ana Paula Fernandes, Carlos A P Tavares
Publikováno v:
PLoS Neglected Tropical Diseases, Vol 7, Iss 4 (2013)
[This corrects the article on p. e2148 in vol. 7.].
Externí odkaz:
https://doaj.org/article/d7ad906be92f4af5912847fd6c0a1358
Autor:
Vivian T Martins, Miguel A Chávez-Fumagalli, Lourena E Costa, Adriana M C Canavaci, Adriana M C C Martins, Paula S Lage, Daniela P Lage, Mariana C Duarte, Diogo G Valadares, Rubens D M Magalhães, Tatiana G Ribeiro, Ronaldo A P Nagem, Wanderson D Darocha, Wiliam C B Régis, Manuel Soto, Eduardo A F Coelho, Ana Paula Fernandes, Carlos A P Tavares
Publikováno v:
PLoS Neglected Tropical Diseases, Vol 7, Iss 3, p e2148 (2013)
BackgroundThe present study aimed to evaluate a hypothetical Leishmania amastigote-specific protein (LiHyp1), previously identified by an immunoproteomic approach performed in Leishmania infantum, which showed homology to the super-oxygenase gene fam
Externí odkaz:
https://doaj.org/article/1ed48caba5074aee8f85afeec8e6a389
Autor:
Wanderson D. DaRocha, José L. Sáenz-Garcia, Rodrigo S.C. Brant, Yirys Díaz-Olmos, Lisandro Pacheco-Lugo, Rodrigo Netto-Costa
Publikováno v:
International Journal for Parasitology
Repositorio Digital USB
Universidad Simón Bolívar
instacron:Universidad Simón Bolívar
Repositorio Digital USB
Universidad Simón Bolívar
instacron:Universidad Simón Bolívar
The genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving
Autor:
Jose L. Saenz-Garcia, Beatriz S. Borges, Normanda Souza-Melo, Luiz V. Machado, Juliana S. Miranda, Lisandro Alfonso Pacheco-Lugo, Nilmar S. Moretti, Richard Wheleer, Lia C. Soares Medeiros, Wanderson D. DaRocha
Publikováno v:
Repositório Institucional da FIOCRUZ (ARCA)
Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
Frontiers in Cellular and Infection Microbiology, Vol 11 (2022)
Frontiers in Cellular and Infection Microbiology
Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
Frontiers in Cellular and Infection Microbiology, Vol 11 (2022)
Frontiers in Cellular and Infection Microbiology
Universidade Federal do Paraná. Laboratório de Genômica Funcional de Parasitos. Curitiba, PR, Brasil. Fundação Oswaldo Cruz. Instituto Carlos Chagas. Laboratório de Biologia Celular. Curitiba, PR, Brasil. Universidade Federal de São Paulo. Esc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::601eb87801cd2b72a4cb473081f64dcc
https://www.arca.fiocruz.br/handle/icict/51869
https://www.arca.fiocruz.br/handle/icict/51869
Autor:
Melissa Soares-Simões, Gabriela de Assis Burle-Caldas, Wanderson D. DaRocha, Santuza M. R. Teixeira, Laiane Lemos-Pechnicki
Publikováno v:
International Journal for Parasitology. 48:591-596
CRISPR/Cas9 technology has been used to edit genomes in a variety of organisms. Using the GP72 gene as a target sequence, we tested two distinct approaches to generate Trypanosoma cruzi knockout mutants using the Cas9 nuclease and in vitro transcribe
Autor:
Melissa Soares-Simões, Viviane Grazielle-Silva, Isabel Roditi, Santuza M. R. Teixeira, Wanderson D. DaRocha, Gabriela Schumann Burkard, Gabriela de Assis Burle-Caldas
Publikováno v:
Molecular and Biochemical Parasitology. 212:28-32
Gene function studies in Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, have been hindered by the lack of efficient genetic manipulation protocols. In most organisms, insertion and deletion of DNA fragments in the genome are de
Autor:
Lisandro Pacheco-Lugo, Juliana Miranda, José L. Sáenz-Garcia, Emily da Silva Córneo, Ricardo Andrez Machado-de-Ávila, Juliana de Moura, Isabel B. Yamanaka, Wanderson D. DaRocha
Publikováno v:
Experimental parasitology. 210
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitrohe
Autor:
Philippe Billiald, Juliana de Moura, Wanderson D. DaRocha, Larissa Magalhães Alvarenga, Cristian Andrés Cortez Plaza, Lisandro Pacheco-Lugo, Lara Maria Kalempa Demeu, Juliana Miranda, Kelin Gonçalves de Oliveira, Rodrigo Jahn Soares, Nobuko Yoshida
Publikováno v:
PLoS ONE, Vol 14, Iss 10, p e0223773 (2019)
PLoS ONE
14(10), (2019)
Tibayrenc M, Barnabe´ C, Telleria J. Reticulate Evolution in: Medical and Epidemiological Implications In: Telleria J, Tibayrenc M, editors. American trypanosomiasis: Chagas disease One hundred years of research. Burlington: Elsevier; 2010. 475–488.
World Health Organization Health Topics, Chagas disease, 2017. www.who.int/topics/chagas_disease/ en/. Accessed 04 Oct 2017
Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions: a comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110:277–282. https://doi.org/10.1590/ 0074-0276140362 PMID: 25466622
Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, et al. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data. 2017; 4:170050. https://doi.org/10.1038/sdata.2017.50 PMID: 28398292
World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec Feb 90:33–43
Gurgel-Gonc¸alves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in brazil based on ecological niche modeling. J Trop Med. 2012;:Article ID 705326. https://doi.org/ 10.1155/2012/705326 PMID: 22523500
Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RA, Obara MT,et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multicriteria decision analysis. Acta Trop. 2014; 137:105–110. https://doi.org/10.1016/j.actatropica.2014.05. 007 PMID: 24857942
(2016) Brazilian consensus on Chagas disease. Epidemiol Serv Saúde, Brasília 25(nu´m. esp.):7–86
Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015; 149:70–85. https://doi.org/10.1016/j.actatropica.2015.05. 014 PMID: 26003952
Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19:495–501. https://doi.org/10.1016/j.pt.2003.09.001 PMID: 14580960
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987; 81:755–759. https://doi.org/10.1016/ 0035-9203(87)90020-4 PMID: 3130683
Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, De Araújo SM, et al. In vivo susceptibility to Benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013; 18:85–95. https://doi.org/10.1111/tmi.12014 PMID: 23130989
Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2016; 12:580–584. https://doi.org/10.1038/nm1395 PMID: 16604085
Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release. 2014; 197 10:190–198. https://doi.org/10.1016/j.jconrel.2014.11.002 PMID: 25445702
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015; 25:e1004942(6). https://doi.org/10.1371/journal.ppat.1004942 PMID: 26110623
Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Pérez-Morga D, et al. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog. 2011; 7:e1002072. https://doi.org/10.1371/journal.ppat.1002072 PMID: 21698216
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016; 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9 PMID: 26659224
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011; 7:1334–1344. https://doi.org/10.7150/ijbs.7.1334 PMID: 22110385
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, et al. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2018; 119:94–98. https://doi.org/10.1016/j.exppara.2007.12.020 PMID: 18331732
Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasites Vectors. 2011; 4:77. https://doi.org/10.1186/1756-3305-4-77 PMID: 21569540
De Vooght CG, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Factories. 2014; 13:156. https://doi.org/10.1186/s12934-014-0156-6 PMID: 25376234
Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35-and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun. 1989; 57:1663–1667 PMID: 2656520
Mortara RA, Da Silva S, Araguth MF, Blanco SA, Yoshida N. Polymorphism of the 35-and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun. 1992; 60:4673–4678 PMID: 1328061
Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, et l. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J. 2011; 438:303–313. https://doi.org/10. 1042/BJ20110683 PMID: 21651499
Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc. 2006; 78:87–111. https://doi.org//S0001-37652006000100010 PMID: 16532210
Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonc¸a-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl-containing oligosaccharides. Biochemistry. 2004/ 43(37):11889–97. https://doi.org/10.1021/ bi048942u PMID: 15362875
Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71 PMID: 1933899
Kuan CT, Srivastava N, Mclendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant singlechain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010; 127:598–611. https://doi.org/10.1002/ijc. 25062 PMID: 19937796
Crivianu-Gaita V, ThompsonM (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016; 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091 PMID: 27155114
Fields C, O’Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc. 2013; 8:1125–1148. https://doi.org/10.1038/nprot.2013.057 PMID: 23680984
Lyskov S, Chou FC, Conchúir SO´, Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One. 2013 8: e63906. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins. 2013; 81:2150–2158. https://doi.org/10.1002/prot.24433 PMID: 24123156
Mcguffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015; 43:W169– W173. https://doi.org/10.1093/nar/gkv236 PMID: 25820431
Karim-Silva S, Moura Jd, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, et al. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett. 2016; 176:90–6. https://doi.org/10.1016/j.imlet.2016.05.019 PMID: 27288291
Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Typanosoma cruzi intraespecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051–1054. https://doi.org/10.1590/s0074-02762009000700021 PMID: 20027478
Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles N, et al. Biological aspect of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988; 83:123–133. https://doi.org/10.1590/s0074-02761988000100016 PMID: 3074237
Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986; 18:271–282. https://doi. org/10.1016/0166-6851(86)90085-x PMID: 3515178
Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995; 270:27244–27253. https://doi.org/10.1074/jbc.270.45.27244 PMID: 7592983
Mcgwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003; 188:146–152. https://doi.org/10.1086/375747 PMID: 12825184
Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB J. 2006; 20:1396–1406. https://doi.org/10.1096/fj.05-5699com PMID: 16816115
Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gómez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein. PLOS ONE. 2012: 7:e36233. https://doi.org/10.1371/journal.pone.0036233 PMID: 22570698
Mendonc¸a-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. 2013; 30:659–666. https://doi.org/10.1007/s10719-013-9469-7 PMID: 23430107
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, et al. A New expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries. Immunol Lett. 2015; 167:95–102. https://doi.org/10.1016/j.imlet.2015.07.005 PMID: 26219832
Lim KP, Li H, Nathan S. Expression and purification of a recombinant scFv towards the exotoxin of the pathogen, Burkholderia pseudomallei. J Microbiol. 2004; 42:126–132 PMID: 15357306
Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S. Different expression systems resulted in varied binding properties of anti–paclitaxel single–chain variable fragment antibody clone 1C2. J Nat Med. 2018; 72:310–316. https://doi.org/10.1007/s11418-017-1136-z PMID: 29027080
Yoshida N, Dorta ML, Ferreira AT, Oshiro ME, Mortara RA, Acosta-Serrano A, et l. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol. 1997; 84:57–67. https://doi.org/10.1016/s0166-6851(96)02783-1 PMID: 9041521
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol. 2018; 44:31–40. https://doi.org/10.1016/j.nbt. 2018.04.006 PMID: 29689305
Cámara MLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, et al. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis. 2019; 13(5):e0007418. https://doi.org/10.1371/journal.pntd.0007418 PMID: 31107901
Silveira AC, Dias JCP. O controle da transmissão vetorial. Rev Soc Bras Med Trop 44 Supplement. 2011; 2:52–63. https://doi.org/10.1590/S0037-86822011000800009
Ministério da Saúde (BR) Secretaria de vigilância em saúde. Guía de vigilância em saúde. Ministério da Saúde, Brasília, 2007
Repositorio Digital USB
Universidad Simón Bolívar
instacron:Universidad Simón Bolívar
PLoS ONE
14(10), (2019)
Tibayrenc M, Barnabe´ C, Telleria J. Reticulate Evolution in: Medical and Epidemiological Implications In: Telleria J, Tibayrenc M, editors. American trypanosomiasis: Chagas disease One hundred years of research. Burlington: Elsevier; 2010. 475–488.
World Health Organization Health Topics, Chagas disease, 2017. www.who.int/topics/chagas_disease/ en/. Accessed 04 Oct 2017
Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions: a comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110:277–282. https://doi.org/10.1590/ 0074-0276140362 PMID: 25466622
Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, et al. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data. 2017; 4:170050. https://doi.org/10.1038/sdata.2017.50 PMID: 28398292
World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec Feb 90:33–43
Gurgel-Gonc¸alves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in brazil based on ecological niche modeling. J Trop Med. 2012;:Article ID 705326. https://doi.org/ 10.1155/2012/705326 PMID: 22523500
Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RA, Obara MT,et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multicriteria decision analysis. Acta Trop. 2014; 137:105–110. https://doi.org/10.1016/j.actatropica.2014.05. 007 PMID: 24857942
(2016) Brazilian consensus on Chagas disease. Epidemiol Serv Saúde, Brasília 25(nu´m. esp.):7–86
Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015; 149:70–85. https://doi.org/10.1016/j.actatropica.2015.05. 014 PMID: 26003952
Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19:495–501. https://doi.org/10.1016/j.pt.2003.09.001 PMID: 14580960
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987; 81:755–759. https://doi.org/10.1016/ 0035-9203(87)90020-4 PMID: 3130683
Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, De Araújo SM, et al. In vivo susceptibility to Benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013; 18:85–95. https://doi.org/10.1111/tmi.12014 PMID: 23130989
Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2016; 12:580–584. https://doi.org/10.1038/nm1395 PMID: 16604085
Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release. 2014; 197 10:190–198. https://doi.org/10.1016/j.jconrel.2014.11.002 PMID: 25445702
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015; 25:e1004942(6). https://doi.org/10.1371/journal.ppat.1004942 PMID: 26110623
Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Pérez-Morga D, et al. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog. 2011; 7:e1002072. https://doi.org/10.1371/journal.ppat.1002072 PMID: 21698216
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016; 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9 PMID: 26659224
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011; 7:1334–1344. https://doi.org/10.7150/ijbs.7.1334 PMID: 22110385
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, et al. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2018; 119:94–98. https://doi.org/10.1016/j.exppara.2007.12.020 PMID: 18331732
Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasites Vectors. 2011; 4:77. https://doi.org/10.1186/1756-3305-4-77 PMID: 21569540
De Vooght CG, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Factories. 2014; 13:156. https://doi.org/10.1186/s12934-014-0156-6 PMID: 25376234
Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35-and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun. 1989; 57:1663–1667 PMID: 2656520
Mortara RA, Da Silva S, Araguth MF, Blanco SA, Yoshida N. Polymorphism of the 35-and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun. 1992; 60:4673–4678 PMID: 1328061
Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, et l. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J. 2011; 438:303–313. https://doi.org/10. 1042/BJ20110683 PMID: 21651499
Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc. 2006; 78:87–111. https://doi.org//S0001-37652006000100010 PMID: 16532210
Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonc¸a-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl-containing oligosaccharides. Biochemistry. 2004/ 43(37):11889–97. https://doi.org/10.1021/ bi048942u PMID: 15362875
Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71 PMID: 1933899
Kuan CT, Srivastava N, Mclendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant singlechain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010; 127:598–611. https://doi.org/10.1002/ijc. 25062 PMID: 19937796
Crivianu-Gaita V, ThompsonM (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016; 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091 PMID: 27155114
Fields C, O’Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc. 2013; 8:1125–1148. https://doi.org/10.1038/nprot.2013.057 PMID: 23680984
Lyskov S, Chou FC, Conchúir SO´, Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One. 2013 8: e63906. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins. 2013; 81:2150–2158. https://doi.org/10.1002/prot.24433 PMID: 24123156
Mcguffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015; 43:W169– W173. https://doi.org/10.1093/nar/gkv236 PMID: 25820431
Karim-Silva S, Moura Jd, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, et al. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett. 2016; 176:90–6. https://doi.org/10.1016/j.imlet.2016.05.019 PMID: 27288291
Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Typanosoma cruzi intraespecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051–1054. https://doi.org/10.1590/s0074-02762009000700021 PMID: 20027478
Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles N, et al. Biological aspect of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988; 83:123–133. https://doi.org/10.1590/s0074-02761988000100016 PMID: 3074237
Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986; 18:271–282. https://doi. org/10.1016/0166-6851(86)90085-x PMID: 3515178
Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995; 270:27244–27253. https://doi.org/10.1074/jbc.270.45.27244 PMID: 7592983
Mcgwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003; 188:146–152. https://doi.org/10.1086/375747 PMID: 12825184
Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB J. 2006; 20:1396–1406. https://doi.org/10.1096/fj.05-5699com PMID: 16816115
Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gómez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein. PLOS ONE. 2012: 7:e36233. https://doi.org/10.1371/journal.pone.0036233 PMID: 22570698
Mendonc¸a-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. 2013; 30:659–666. https://doi.org/10.1007/s10719-013-9469-7 PMID: 23430107
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, et al. A New expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries. Immunol Lett. 2015; 167:95–102. https://doi.org/10.1016/j.imlet.2015.07.005 PMID: 26219832
Lim KP, Li H, Nathan S. Expression and purification of a recombinant scFv towards the exotoxin of the pathogen, Burkholderia pseudomallei. J Microbiol. 2004; 42:126–132 PMID: 15357306
Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S. Different expression systems resulted in varied binding properties of anti–paclitaxel single–chain variable fragment antibody clone 1C2. J Nat Med. 2018; 72:310–316. https://doi.org/10.1007/s11418-017-1136-z PMID: 29027080
Yoshida N, Dorta ML, Ferreira AT, Oshiro ME, Mortara RA, Acosta-Serrano A, et l. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol. 1997; 84:57–67. https://doi.org/10.1016/s0166-6851(96)02783-1 PMID: 9041521
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol. 2018; 44:31–40. https://doi.org/10.1016/j.nbt. 2018.04.006 PMID: 29689305
Cámara MLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, et al. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis. 2019; 13(5):e0007418. https://doi.org/10.1371/journal.pntd.0007418 PMID: 31107901
Silveira AC, Dias JCP. O controle da transmissão vetorial. Rev Soc Bras Med Trop 44 Supplement. 2011; 2:52–63. https://doi.org/10.1590/S0037-86822011000800009
Ministério da Saúde (BR) Secretaria de vigilância em saúde. Guía de vigilância em saúde. Ministério da Saúde, Brasília, 2007
Repositorio Digital USB
Universidad Simón Bolívar
instacron:Universidad Simón Bolívar
Trypanosoma cruzi is a flagellate protozoan pathogen that causes Chagas disease. Currently there is no preventive treatment and the efficiency of the two drugs available is limited to the acute phase. Therefore, there is an unmet need for innovative