Zobrazeno 1 - 10
of 446
pro vyhledávání: '"Wan-Tong Li"'
Publikováno v:
Mathematical Biosciences and Engineering, Vol 16, Iss 5, Pp 5991-6014 (2019)
This paper deals with the propagation dynamics of an epidemic model, which is modeled by a partially degenerate reaction-diffusion-advection system with free boundaries and sigmoidal function. We focus on the effect of small advection on the propagat
Externí odkaz:
https://doaj.org/article/d351a81f7fac4f1da7737fe5d919f042
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 122,, Pp 1-28 (2015)
This article concerns the spatial dynamics of a nonlocal dispersal vector disease model with spatio-temporal delay. We establish the existence of spreading speeds and construct some new types of solutions which are different from the traveling wav
Externí odkaz:
https://doaj.org/article/9015397fbb20414e81b98b0f003bf350
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 223,, Pp 1-18 (2012)
In the previous article [Y.-X. Wang and W.-T. Li, J. Differential Equations, 251 (2011) 1670-1695], the authors have shown that the set of positive stationary solutions of a cross-diffusive Lotka-Volterra cooperative system can form an unbounded fish
Externí odkaz:
https://doaj.org/article/2f5330239e2d4c5794886573398c2125
Publikováno v:
Electronic Journal of Differential Equations, Vol 2012, Iss 147,, Pp 1-6 (2012)
In this article, we analyze uniqueness and asymptotic behavior of boundary blow-up non-negative solutions to the semilinear elliptic equation $$displaylines{ Delta u=b(x)f(u),quad xin Omega,cr u(x)=infty, quad xinpartialOmega, }$$ where $Omegasubsetm
Externí odkaz:
https://doaj.org/article/52cfd71c064a45df8ef4a39b01c3fa36
Autor:
Wan-Tong Li, Rong-Kun Zhuang
Publikováno v:
Electronic Journal of Differential Equations, Vol 2005, Iss 69, Pp 1-6 (2005)
New oscillation criteria are established for the nonlinear matrix differential equations with a forced term $$ [ r(t)Y'(t)] '+p(t)Y'(t)+Q(t)G( Y'(t)) F( Y(t)) =e(t)I_n. $$ Our results extend and improve the recent results of Li and Agarwal for scalar
Externí odkaz:
https://doaj.org/article/42f110d19aa44b9da1e4becc56d20c78
Autor:
Fei-Yu Zhang, Wan-Tong Li
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2005, Iss 1, Pp 1-17 (2005)
We study dynamical behavior of a class of cellular neural networks system with distributed delays under dynamical thresholds. By using topological degree theory and Lyapunov functions, some new criteria ensuring the existence, uniqueness, global asym
Externí odkaz:
https://doaj.org/article/b4ce2958d7f04c5184884bbfdc59842b
Autor:
Hai-Feng Huo, Wan-Tong Li
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2005, Iss 2, Pp 135-144 (2005)
We first give sufficient conditions for the permanence of nonautonomous discrete ratio-dependent predator-prey model. By linearization of the model at positive solutions and construction of Lyapunov function, we also obtain some conditions which ensu
Externí odkaz:
https://doaj.org/article/90512691469944d489e3ae59dbb9a45a
Publikováno v:
Advances in Difference Equations, Vol 2004, Iss 4, Pp 321-336 (2004)
We study the existence and global stability of positive periodic solutions of a periodic discrete predator-prey system with delay and Holling type III functional response. By using the continuation theorem of coincidence degree theory and the method
Externí odkaz:
https://doaj.org/article/b85572208e244e23b368b106b81070ea
Autor:
Can-Yun Huang, Wan-Tong Li
Publikováno v:
Electronic Journal of Differential Equations, Vol 2004, Iss 17, Pp 1-8 (2004)
A classification scheme is given for the eventually positive solutions to a class of second order nonlinear dynamic equations, in terms of their asymptotic magnitudes. Also we provide necessary and/or sufficient conditions for the existence of positi
Externí odkaz:
https://doaj.org/article/be13294e43e84ecc9ed3fb6935bfdfb1
Autor:
Lin-Lin Wang, Wan-Tong Li
Publikováno v:
Discrete Dynamics in Nature and Society, Vol 2004, Iss 2, Pp 325-343 (2004)
The existence of positive periodic solutions for a delayed discrete predator-prey model with Holling-type-III functional response N1(k+1)=N1(k)exp{b1(k)−a1(k)N1(k−[τ1])−α1(k)N1(k)N2(k)/(N12(k)+m2N22(k))}, N2(k+1)=N2(k)exp{−b2(k)+α2(k)N12(k
Externí odkaz:
https://doaj.org/article/8b1ad5fce3c94c8386e5a6271bcdf559