Zobrazeno 1 - 10
of 59
pro vyhledávání: '"Walter R Bloom"'
Publikováno v:
Notices of the American Mathematical Society. 70:1
Publikováno v:
Ann. Funct. Anal. 6, no. 4 (2015), 30-59
The following theorem on the circle group $\mathbb{T}$ is due to Norbert Wiener: If $f\in L^{1}\left(\mathbb{T}\right)$ has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then $f\in L^{2}\left( \mathbb{
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6de3f5e4a2da93d279b04a7326dc3a5
Autor:
Norman John Wildberger, Walter R Bloom
Publikováno v:
Communications on Stochastic Analysis. 10
Autor:
Jane Skalicky, Diane Donovan, Leigh N. Wood, Matt Bower, Natalie Brown, Birgit Loch, Walter R. Bloom, Nalini Joshi, Tori Vu
Publikováno v:
International Journal of Mathematical Education in Science and Technology. 42:997-1009
Due to the changing nature of learning and teaching in universities, there is a growing need for professional development for lecturers and tutors teaching in disciplines in the mathematical sciences. Mathematics teaching staff receive some training
Autor:
Walter R. Bloom, Paul Ressel
Publikováno v:
Journal of the Australian Mathematical Society. 79:25-37
In this paper we investigate when negative definite functions on commutative hypergroups satisfy the Schoenberg criterion.
Autor:
Paul Ressel, Walter R. Bloom
Publikováno v:
Archiv der Mathematik. 78:318-328
We investigate the relationship between polynomial hypergroups and the usual semigroup structure on the non-negative integers.
Autor:
Zengfu Xu, Walter R. Bloom
Publikováno v:
Infinite Dimensional Analysis, Quantum Probability and Related Topics. :403-434
In this paper we study certain maximal functions for a class of Chébli–Trimèche hypergroups. Versions of the standard maximal theorems for these maximal functions are established and some applications are given.
Autor:
Zengfu Xu, Walter R. Bloom
Publikováno v:
Proceedings of the London Mathematical Society. 80:643-664
In this paper we consider Fourier multipliers for $L^p$ $(p>1)$ on Chebli-Trimeche hypergroups and establish a version of Hormander's multiplier theorem. As applications we give some results concerning the Riesz potentials and oscillating multipliers
Autor:
Walter R. Bloom, Zengfu Xu
Publikováno v:
Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics. 68:202-230
In this paper we consider pseudo differential operators on local Hardy spaces hp (0 < p ≤ 1) on Chébli-Trimèche hypergroups of exponential growth.
Autor:
Walter R. Bloom, Zengfu Xu
Publikováno v:
Studia Mathematica. 133:197-230
We investigate the local Hardy spaces h p on Chebli-Trimeche hypergroups, and establish the equivalence of various characterizations of these in terms of maximal functions and atomic decomposition.