Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Walter Leighton"'
Autor:
Walter Leighton
Publikováno v:
Journal of Mathematical Analysis and Applications. 114(2):497-502
Autor:
Walter Leighton
Publikováno v:
Journal d'Analyse Mathématique. 36:191-197
Autor:
Walter Leighton
Publikováno v:
Journal of Mathematical Analysis and Applications. 106:188-195
Autor:
Walter Leighton
Publikováno v:
Annali di Matematica Pura ed Applicata. 107:373-381
A study of the fundamental nature of solving a system of n ordinary (nondifferential) equations is undertaken in § 1. It is found that the properties of the inverse function play an unexpectedly decisive role. In § 2, the results of § 1 are applie
Autor:
Walter Leighton
Publikováno v:
Canadian Journal of Mathematics. 28:1172-1179
Section 1 of this paper is concerned with the effect on conjugate and σ-points of various perturbations of q(x) for differential equations of the form
Autor:
W. J. Thron, Walter Leighton
Publikováno v:
Bull. Amer. Math. Soc. 48, no. 12 (1942), 917-920
Autor:
Walter Leighton
Publikováno v:
Journal of Mathematical Analysis and Applications. 35:381-388
This paper presents a new method for computing upper and lower bounds for the eigenvalues of the system [ r ( x ) y ′]′ + λp ( x ) y = 0, y ( a ) = y ( b ) = 0. It permits one to approximate as closely as desired simultaneously to any finite sub
Autor:
Walter Leighton
Publikováno v:
Journal of Mathematical Analysis and Applications. 28:59-76
Autor:
Walter Leighton
Publikováno v:
Transactions of the American Mathematical Society. 151:309-322
In this paper we study the minimizing of the general second-order quadratic functional (1.3) in a class of admissible functions y ( x ) y(x) with fixed endpoint conditions on y ( x ) y(x) and its derivative at x = a x = a and at x = b x = b . Necessa
Autor:
Walter Leighton, William Oo Kian Ke
Publikováno v:
Annali di Matematica Pura ed Applicata. 86:99-114
The purpose of this paper is to provide relatively simple methods for the determination of useful upper and lower bounds for the first zero greater than a of solutions of systems y″+p(x)y=0, y(a)=0, where p(x) is positive and continuous on an inter