Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Walter Freyn"'
Autor:
Rafael Dahmen, Walter Freyn
Publikováno v:
Zeitschrift für Hochschulentwicklung (2014)
Wir beschreiben die Entwicklung der Veranstaltung "Treffpunkt Mathematik" (im Folgenden abgekürzt als TM) an der TU Darmstadt. Der TM ist eine Ergänzungsveranstaltung in der mathematischen Grundausbildung der INT-Fächer und legt besonderen Wert au
Externí odkaz:
https://doaj.org/article/b55475274b1c423789e98dc79868c9b8
Publikováno v:
Complex Manifolds, Vol 6, Iss 1, Pp 194-227 (2019)
The classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop param
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1deee580a291246b3c1c9fb8eb0608d6
http://arxiv.org/abs/1902.01558
http://arxiv.org/abs/1902.01558
Autor:
Walter Freyn
Publikováno v:
Transactions of the American Mathematical Society. 367:7133-7159
Riemannian symmetric spaces are fundamental objects in finite dimensional differential geometry. An important problem is the construction of symmetric spaces for generalizations of simple Lie groups, especially their closest infinite dimensional anal
Publikováno v:
Contemporary Mathematics. :23-40
Let A be a symmetrizable hyperbolic generalized Cartan matrix with Kac-Moody algebra g = g(A) and (adjoint) Kac-Moody group G = G(A)=$\langle\exp(ad(t e_i)), \exp(ad(t f_i)) \,|\, t\in C\rangle$ where $e_i$ and $f_i$ are the simple root vectors. Let
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b9bbb0f4da31f8981c931738129b5d7
http://arxiv.org/abs/1606.05638
http://arxiv.org/abs/1606.05638
Autor:
Walter Freyn, Christian H. Weiß
Publikováno v:
Lehren und Lernen von Mathematik in der Studieneingangsphase ISBN: 9783658102609
Am Fachbereich Mathematik der TU Darmstadt gibt es seit nunmehr 25 Jahren ein Konzept zur Ubungsleiterausbildung, welches seither kontinuierlich optimiert und aktuellen Anforderungen angepasst wurde. Dieses sorgt fur einen qualitatsgesicherten Ubungs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72d43fb3858abb00214130092d3b3858
https://doi.org/10.1007/978-3-658-10261-6_14
https://doi.org/10.1007/978-3-658-10261-6_14
Autor:
Walter Freyn
Publikováno v:
Asian J. Math. 18, no. 5 (2014), 885-928
We construct holomorphic loop groups and their associated affine Kac-Moody groups and prove that they are tame Frechet manifolds; furthermore we study the adjoint action of these groups. These results form the functional analytic core for a theory of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cafcde57353dc6ee875080c6a9e4e6a0
http://projecteuclid.org/euclid.ajm/1417489246
http://projecteuclid.org/euclid.ajm/1417489246
Let $\mathcal{D}$ be a Dynkin diagram and let $\Pi=\{\alpha_1,\dots ,\alpha_{\ell}\}$ be the simple roots of the corresponding Kac--Moody root system. Let $\mathfrak{h}$ denote the Cartan subalgebra, let $W$ denote the Weyl group and let $\Delta$ den
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::084052071f68ed43301354f08c9267b4
Autor:
Walter Freyn
Publikováno v:
Asian J. Math. 16, no. 4 (2012), 607-636
Minimal affine Kac-Moody groups act on affine twin buildings by isometries. However there is no way to extend this action to any completion of the Kac-Moody groups. To remedy this, we introduce in this paper affine twin cities, a new class of objects
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e9f510ebdb53e6c9858e3a4fe3838e39
http://projecteuclid.org/euclid.ajm/1355321981
http://projecteuclid.org/euclid.ajm/1355321981
Autor:
Walter Freyn
Publikováno v:
Global Differential Geometry ISBN: 9783642228414
The geometry of symmetric spaces, polar actions, isoparametric submanifolds and spherical buildings is governed by spherical Weyl groups and simple Lie groups. The most natural generalization of semisimple Lie groups are affine Kac-Moody groups as th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::969ff8158a75556e87cf2baec5b91f19
https://doi.org/10.1007/978-3-642-22842-1_3
https://doi.org/10.1007/978-3-642-22842-1_3