Zobrazeno 1 - 10
of 20 341
pro vyhledávání: '"Walmsley, A"'
Autor:
The Multimodal Universe Collaboration, Audenaert, Jeroen, Bowles, Micah, Boyd, Benjamin M., Chemaly, David, Cherinka, Brian, Ciucă, Ioana, Cranmer, Miles, Do, Aaron, Grayling, Matthew, Hayes, Erin E., Hehir, Tom, Ho, Shirley, Huertas-Company, Marc, Iyer, Kartheik G., Jablonska, Maja, Lanusse, Francois, Leung, Henry W., Mandel, Kaisey, Martínez-Galarza, Juan Rafael, Melchior, Peter, Meyer, Lucas, Parker, Liam H., Qu, Helen, Shen, Jeff, Smith, Michael J., Stone, Connor, Walmsley, Mike, Wu, John F.
We present the MULTIMODAL UNIVERSE, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the MULTIMODAL UNIVERSE contains hundreds of millions of astronomical observ
Externí odkaz:
http://arxiv.org/abs/2412.02527
Autor:
Burdekin, Paul M., Wenniger, Ilse Maillette de Buy, Sagona-Stophel, Stephen, Szuniewicz, Jerzy, Zhang, Aonan, Thomas, Sarah E., Walmsley, Ian A.
Future optical quantum technologies, including quantum networks and distributed quantum computing and sensing, demand efficient, broadband quantum memories. However, achieving high efficiencies in optical quantum memory protocols is a significant cha
Externí odkaz:
http://arxiv.org/abs/2411.17365
Autor:
Pearce-Casey, R., Nagam, B. C., Wilde, J., Busillo, V., Ulivi, L., Andika, I. T., Manjón-García, A., Leuzzi, L., Matavulj, P., Serjeant, S., Walmsley, M., Barroso, J. A. Acevedo, O'Riordan, C. M., Clément, B., Tortora, C., Collett, T. E., Courbin, F., Gavazzi, R., Metcalf, R. B., Cabanac, R., Courtois, H. M., Crook-Mansour, J., Delchambre, L., Despali, G., Ecker, L. R., Franco, A., Holloway, P., Jahnke, K., Mahler, G., Marchetti, L., Melo, A., Meneghetti, M., Müller, O., Nucita, A. A., Pearson, J., Rojas, K., Scarlata, C., Schuldt, S., Sluse, D., Suyu, S. H., Vaccari, M., Vegetti, S., Verma, A., Vernardos, G., Bolzonella, M., Kluge, M., Saifollahi, T., Schirmer, M., Stone, C., Paulino-Afonso, A., Bazzanini, L., Hogg, N. B., Koopmans, L. V. E., Kruk, S., Mannucci, F., Bromley, J. M., Díaz-Sánchez, A., Dickinson, H. J., Powell, D. M., Bouy, H., Laureijs, R., Altieri, B., Amara, A., Andreon, S., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Battaglia, P., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Di Giorgio, A. M., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Faustini, F., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Haugan, S. V. H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Hudelot, P., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kilbinger, M., Kubik, B., Kümmel, M., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Maiorano, E., Mansutti, O., Marggraf, O., Markovic, K., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Sartoris, B., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Kleijn, G. Verdoes, Veropalumbo, A., Wang, Y., Weller, J., Zamorani, G., Zucca, E., Burigana, C., Calabrese, M., Mora, A., Pöntinen, M., Scottez, V., Viel, M., Margalef-Bentabol, B.
The Euclid Wide Survey (EWS) is predicted to find approximately 170 000 galaxy-galaxy strong lenses from its lifetime observation of 14 000 deg^2 of the sky. Detecting this many lenses by visual inspection with professional astronomers and citizen sc
Externí odkaz:
http://arxiv.org/abs/2411.16808
Autor:
Li, Zhenghao, Kendall, Matthew J. H., Machado, Gerard J., Zhu, Ruidi, Mer, Ewan, Zhan, Hao, Zhang, Aonan, Yu, Shang, Walmsley, Ian A., Patel, Raj B.
Transition-Edge Sensors (TESs) are very effective photon-number-resolving (PNR) detectors that have enabled many photonic quantum technologies. However, their relatively slow thermal recovery time severely limits their operation rate in experimental
Externí odkaz:
http://arxiv.org/abs/2411.15360
Autor:
Holwerda, Benne W., Robertson, Clayton, Cook, Kyle, Pimbblet, Kevin A., Casura, Sarah, Sansom, Anne E., Patel, Divya, Butrum, Trevor, Glass, David H. W., Kelvin, Lee, Baldry, Ivan K., De Propris, Roberto, Bamford, Steven, Masters, Karen, Stone, Maria, Hardin, Tim, Walmsley, Mike, Liske, Jochen, Adnan, S M Rafee
Galaxy Zoo is an online project to classify morphological features in extra-galactic imaging surveys with public voting. In this paper, we compare the classifications made for two different surveys, the Dark Energy Spectroscopic Instrument (DESI) ima
Externí odkaz:
http://arxiv.org/abs/2410.19985
Autor:
Yu, Shang, Jia, Zhian, Zhang, Aonan, Mer, Ewan, Li, Zhenghao, Crescimanna, Valerio, Chen, Kuan-Cheng, Patel, Raj B., Walmsley, Ian A., Kaszlikowski, Dagomir
At the dynamic nexus of artificial intelligence and quantum technology, quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning. This development is set to revolution
Externí odkaz:
http://arxiv.org/abs/2409.02533
Autor:
Masters, Karen L., Galloway, Melanie, Fortson, Lucy, Lintott, Chris, Read, Mike, Scarlata, Claudia, Simmons, Brooke, Walmsley, Mike, Willett, Kyle
We present morphological classifications based on Galaxy Zoo analysis of 71,052 galaxies with imaging from the United Kingdom Infrared Telescope Infrared Deep Sky Survey (UKIDSS). Galaxies were selected out of the Galaxy Zoo 2 (GZ2) sample, so also h
Externí odkaz:
http://arxiv.org/abs/2408.10160
Autor:
Barroso, J. A. Acevedo, O'Riordan, C. M., Clément, B., Tortora, C., Collett, T. E., Courbin, F., Gavazzi, R., Metcalf, R. B., Busillo, V., Andika, I. T., Cabanac, R., Courtois, H. M., Crook-Mansour, J., Delchambre, L., Despali, G., Ecker, L. R., Franco, A., Holloway, P., Jackson, N., Jahnke, K., Mahler, G., Marchetti, L., Matavulj, P., Melo, A., Meneghetti, M., Moustakas, L. A., Müller, O., Nucita, A. A., Paulino-Afonso, A., Pearson, J., Rojas, K., Scarlata, C., Schuldt, S., Serjeant, S., Sluse, D., Suyu, S. H., Vaccari, M., Verma, A., Vernardos, G., Walmsley, M., Bouy, H., Walth, G. L., Powell, D. M., Bolzonella, M., Cuillandre, J. -C., Kluge, M., Saifollahi, T., Schirmer, M., Stone, C., Acebron, A., Bazzanini, L., Díaz-Sánchez, A., Hogg, N. B., Koopmans, L. V. E., Kruk, S., Leuzzi, L., Manjón-García, A., Mannucci, F., Nagam, B. C., Pearce-Casey, R., Scharré, L., Wilde, J., Altieri, B., Amara, A., Andreon, S., Auricchio, N., Baccigalupi, C., Baldi, M., Balestra, A., Bardelli, S., Basset, A., Battaglia, P., Bender, R., Bonino, D., Branchini, E., Brescia, M., Brinchmann, J., Caillat, A., Camera, S., Candini, G. P., Capobianco, V., Carbone, C., Carretero, J., Casas, S., Castellano, M., Castignani, G., Cavuoti, S., Cimatti, A., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Cropper, M., Da Silva, A., Degaudenzi, H., De Lucia, G., Dinis, J., Dubath, F., Dupac, X., Dusini, S., Farina, M., Farrens, S., Ferriol, S., Frailis, M., Franceschi, E., Galeotta, S., Garilli, B., George, K., Gillard, W., Gillis, B., Giocoli, C., Gómez-Alvarez, P., Grazian, A., Grupp, F., Guzzo, L., Haugan, S. V. H., Hoekstra, H., Holmes, W., Hook, I., Hormuth, F., Hornstrup, A., Jhabvala, M., Joachimi, B., Keihänen, E., Kermiche, S., Kiessling, A., Kubik, B., Kunz, M., Kurki-Suonio, H., Mignant, D. Le, Ligori, S., Lilje, P. B., Lindholm, V., Lloro, I., Mainetti, G., Maiorano, E., Mansutti, O., Marcin, S., Marggraf, O., Martinelli, M., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Melchior, M., Mellier, Y., Merlin, E., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nakajima, R., Neissner, C., Nichol, R. C., Niemi, S. -M., Nightingale, J. W., Padilla, C., Paltani, S., Pasian, F., Pedersen, K., Percival, W. J., Pettorino, V., Pires, S., Polenta, G., Poncet, M., Popa, L. A., Pozzetti, L., Raison, F., Rebolo, R., Renzi, A., Rhodes, J., Riccio, G., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Sakr, Z., Sánchez, A. G., Sapone, D., Schneider, P., Schrabback, T., Secroun, A., Seidel, G., Serrano, S., Sirignano, C., Sirri, G., Skottfelt, J., Stanco, L., Steinwagner, J., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Tutusaus, I., Valentijn, E. A., Valenziano, L., Vassallo, T., Wang, Y., Weller, J., Zucca, E., Burigana, C., Scottez, V., Viel, M.
We investigate the ability of the Euclid telescope to detect galaxy-scale gravitational lenses. To do so, we perform a systematic visual inspection of the $0.7\,\rm{deg}^2$ Euclid ERO data towards the Perseus cluster using both the high-resolution VI
Externí odkaz:
http://arxiv.org/abs/2408.06217
Autor:
Iyer, Kartheik G., Yunus, Mikaeel, O'Neill, Charles, Ye, Christine, Hyk, Alina, McCormick, Kiera, Ciuca, Ioana, Wu, John F., Accomazzi, Alberto, Astarita, Simone, Chakrabarty, Rishabh, Cranney, Jesse, Field, Anjalie, Ghosal, Tirthankar, Ginolfi, Michele, Huertas-Company, Marc, Jablonska, Maja, Kruk, Sandor, Liu, Huiling, Marchidan, Gabriel, Mistry, Rohit, Naiman, J. P., Peek, J. E. G., Polimera, Mugdha, Rodriguez, Sergio J., Schawinski, Kevin, Sharma, Sanjib, Smith, Michael J., Ting, Yuan-Sen, Walmsley, Mike
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable lite
Externí odkaz:
http://arxiv.org/abs/2408.01556
Reliably characterised pulses are the starting point of any application of ultrafast techniques. Unfortunately, experimental constraints do not always allow optimising the characterisation conditions. This dictates the need for refined analysis metho
Externí odkaz:
http://arxiv.org/abs/2407.02976