Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Walker H. Stern"'
Publikováno v:
Applied Categorical Structures. 30:1341-1392
In this work, we prove a generalization of Quillen's Theorem A to 2-categories equipped with a special set of morphisms which we think of as weak equivalences, providing sufficient conditions for a 2-functor to induce an equivalence on $(\infty,1)$-l
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::106739795790aaa7c7aff593ef6d21bc
Publikováno v:
Algebr. Geom. Topol. 20, no. 6 (2020), 3147-3182
In this work, we introduce a 2-categorical variant of Lurie's relative nerve functor. We prove that it defines a right Quillen equivalence which, upon passage to $\infty$-categorical localizations, corresponds to Lurie's scaled unstraightening equiva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84c51d32d932a889135da39d444af4e9
http://arxiv.org/abs/1910.06223
http://arxiv.org/abs/1910.06223
Autor:
Walker H. Stern
Publikováno v:
Journal of Homotopy and Related Structures
We define a category parameterizing Calabi-Yau algebra objects in an infinity category of spans. Using this category, we prove that there are equivalences of infinity categories relating, firstly: 2-Segal simplicial objects in C to algebra objects in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4faac5086319a962799d8ce3a8880f2c