Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Wai Leong Chooi"'
Publikováno v:
Linear and Multilinear Algebra. :1-24
Autor:
Yean Nee Tan, Wai Leong Chooi
Publikováno v:
University of Wyoming Open Journals
Let $n\geq 2$ and $11$ and the underlying field $\mathbb{F}$ of characteristic not two are included.
Publikováno v:
Linear Algebra and its Applications. 626:34-55
Let n ⩾ 2 be an integer and let T n ( F ) be the algebra of n × n upper triangular matrices over an arbitrary field F . In this paper, a complete structural characterization of commuting additive maps ψ : T n ( F ) → T n ( F ) on rank one trian
Autor:
Jian Yong Wong, Wai Leong Chooi
Publikováno v:
Linear and Multilinear Algebra. 70:5580-5605
Let k,n1,…,nk be positive integers such that ni⩾2 for i=1,…,k and let Mni denote the algebra of ni×ni matrices over a field F for i=1,…,k. Let ⨂i=1kMni be the tensor product of Mn1,…,Mnk. We obtain...
Autor:
Wai Leong Chooi, Kiam Heong Kwa
Publikováno v:
The Electronic Journal of Linear Algebra. 36:847-856
Let ${\cal U}$ and ${\cal V}$ be linear spaces over fields $\mathbb{F}$ and $\mathbb{K}$, respectively, such that Dim$\,{\cal U}=n\geqslant 2$ and $\left|\mathbb{F}\right|\geqslant 3$. Let $\bigwedge^2{\cal U}$ be the second exterior power of ${\cal
Publikováno v:
Linear Algebra and its Applications. 583:77-101
Publikováno v:
Linear and Multilinear Algebra. 68:1021-1030
Let n ⩾ 2 be an integer and let F be a field with F ⩾ 3 . Let T n ( F ) be the ring of n × n upper triangular matrices over F with centre Z . Fixing an integer 2 ⩽ k ⩽ n , we prove that an additive...
Autor:
Kiam Heong Kwa, Wai Leong Chooi
Publikováno v:
Linear and Multilinear Algebra. 68:869-885
Let Ψ : ⨂ i = 1 d H n i → ⨂ i = 1 d H n i be a linear map on the Kronecker product of spaces of Hermitian matrices H n i of size n i ≥ 3 . (If d=1, we identify ⨂ i = 1 d H n i with H n 1 .) We esta...
Autor:
Wai Leong Chooi, Kiam Heong Kwa
Publikováno v:
Linear and Multilinear Algebra. 67:1269-1293
Let F and K be fields and let n be a positive integer. Let U and V be linear spaces over F such that n=dimU⩽dimV and let W and Z be linear spaces over K . Let U⨂V be the tensor product of U...
Publikováno v:
Linear Algebra and its Applications. 516:24-46
In 1940s, Hua established the fundamental theorem of geometry of rectangular matrices which describes the general form of coherence invariant bijective maps on the space of all matrices of a given size. In 1955, Jacob generalized Hua's theorem to tha