Zobrazeno 1 - 10
of 158
pro vyhledávání: '"Wagemann, Friedrich"'
We introduce a general definition of a $n$-crossed module of $P$-algebras over an algebraic operad $P$, which coincides with historical definitions in the cases of the operads As and Lie and $n = 1$. We establish a natural isomorphism between the abe
Externí odkaz:
http://arxiv.org/abs/2411.04614
Autor:
Feldvoss, Jörg, Wagemann, Friedrich
In this paper we define three different notions of tensor products for Leibniz bimodules. The ``natural" tensor product of Leibniz bimodules is not always a Leibniz bimodule. In order to fix this, we introduce the notion of a weak Leibniz bimodule an
Externí odkaz:
http://arxiv.org/abs/2411.01044
We compute the Gabriel quiver of simple objects in the category of bimodules over a simple Leibniz algebra and over the trivial $1$-dimensional Leibniz algebra. Vertices of the quiver are the classes of simple objects, arrows are given by the dimensi
Externí odkaz:
http://arxiv.org/abs/2308.04810
In this paper, first we construct two subcategories (using symmetric representations and antisymmetric representations) of the category of relative Rota-Baxter operators on Leibniz algebras, and establish the relations with the categories of relative
Externí odkaz:
http://arxiv.org/abs/2306.13873
Autor:
Feldvoss, Jörg, Wagemann, Friedrich
This paper is a sequel to our article [Feldvoss-Wagemann], where we mainly considered semi-simple Leibniz algebras. It turns out that the analogue of the Hochschild-Serre spectral sequence for Leibniz cohomology cannot be applied to many ideals, and
Externí odkaz:
http://arxiv.org/abs/2304.03116
Autor:
Feldvoss, Jörg, Wagemann, Friedrich
Publikováno v:
In Indagationes Mathematicae January 2024 35(1):87-113
Autor:
Mugniery, Jean, Wagemann, Friedrich
In this article, we generalize Loday and Pirashvili's [10] computation of the Ext-category of Leibniz bimodules for a simple Lie algebra to the case of a simple (non Lie) Leibniz algebra. Most of the arguments generalize easily, while the main new in
Externí odkaz:
http://arxiv.org/abs/2006.05705
Autor:
Burde, Dietrich, Wagemann, Friedrich
Publikováno v:
In Journal of Algebra 1 September 2023 629:381-398
Autor:
Wagemann, Friedrich
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic 2. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain comparison sp
Externí odkaz:
http://arxiv.org/abs/1908.06764
Autor:
Burde, Dietrich, Wagemann, Friedrich
We study sympathetic Lie algebras, namely perfect and complete Lie algebras. They arise among other things in the study of adjoint Lie algebra cohomology. This is motivated by a conjecture of Pirashvili, which says that a non-trivial finite-dimension
Externí odkaz:
http://arxiv.org/abs/1908.05963