Zobrazeno 1 - 10
of 127
pro vyhledávání: '"Wadim Zudilin"'
Autor:
Wadim Zudilin
Publikováno v:
Mathematics, Vol 3, Iss 1, Pp 119-130 (2015)
The multiple zeta values (MZVs) possess a rich algebraic structure of algebraic relations, which is conjecturally determined by two different (shuffle and stuffle) products of a certain algebra of noncommutative words. In a recent work, Bachmann cons
Externí odkaz:
https://doaj.org/article/4ccf13688c58465186992336dd2c737a
Autor:
Wadim Zudilin
Publikováno v:
Monographs in Number Theory ISBN: 9789811279317
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4261e160a5f030217952dfb87711f6b4
https://doi.org/10.1142/13498
https://doi.org/10.1142/13498
Publikováno v:
Experimental Mathematics, 31, 1278-1290
Experimental Mathematics
Experimental Mathematics, 31, 4, pp. 1278-1290
Exper.Math.
Exper.Math., 2020, ⟨10.1080/10586458.2020.1737990⟩
Experimental Mathematics
Experimental Mathematics, 31, 4, pp. 1278-1290
Exper.Math.
Exper.Math., 2020, ⟨10.1080/10586458.2020.1737990⟩
We recognize certain special hypergeometric motives, related to and inspired by the discoveries of Ramanujan more than a century ago, as arising from Asai $L$-functions of Hilbert modular forms.
Comment: 18 pages
Comment: 18 pages
Autor:
Wadim Zudilin, Doron Zeilberger
Publikováno v:
International Journal of Number Theory, 17, 815-825
International Journal of Number Theory, 17, 03, pp. 815-825
International Journal of Number Theory, 17, 03, pp. 815-825
We illustrate the power of Experimental Mathematics and Symbolic Computation to suggest irrationality proofs of natural constants, and the determination of their irrationality measures. Sometimes such proofs can be fully automated, but sometimes ther
Autor:
Wadim Zudilin, Christoph Koutschan
Publikováno v:
Bulletin of the Australian Mathematical Society, 106, 273-279
Bulletin of the Australian Mathematical Society, 106, 2, pp. 273-279
Bulletin of the Australian Mathematical Society, 106, 2, pp. 273-279
For an (irreducible) recurrence equation with coefficients from $\mathbb Z[n]$ and its two linearly independent rational solutions $u_n,v_n$, the limit of $u_n/v_n$ as $n\to\infty$, when exists, is called the Ap\'ery limit. We give a construction tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ce4dc83464fbed93d50d0b396733984a
http://hdl.handle.net/2066/253646
http://hdl.handle.net/2066/253646
Autor:
VICENŢIU PAŞOL, WADIM ZUDILIN
Publikováno v:
Nagoya Mathematical Journal, 248, 849-864
Nagoya Mathematical Journal, 248, pp. 849-864
Nagoya Mathematical Journal, 248, pp. 849-864
A (folklore?) conjecture states that no holomorphic modular form $F(\tau)=\sum_{n=1}^\infty a_nq^n\in q\mathbb Z[[q]]$ exists, where $q=e^{2\pi i\tau}$, such that its anti-derivative $\sum_{n=1}^\infty a_nq^n/n$ has integral coefficients in the $q$-e
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ec9f95fba30c13f0b7430a076fde13d
http://hdl.handle.net/2066/284867
http://hdl.handle.net/2066/284867
Autor:
Wadim Zudilin
Publikováno v:
ICCM Notices, 7, 32-46
ICCM Notices, 7, 2, pp. 32-46
ICCM Notices, 7, 2, pp. 32-46
Contains fulltext : 207652.pdf (Author’s version preprint ) (Open Access)
Autor:
Shaun Cooper, Wadim Zudilin
Publikováno v:
Journal of the Australian Mathematical Society, 107, 3, pp. 338-366
Journal of the Australian Mathematical Society
Journal of the Australian Mathematical Society, 107, 338-366
Journal of the Australian Mathematical Society
Journal of the Australian Mathematical Society, 107, 338-366
We record $$ \binom{42}2+\binom{23}2+\binom{13}2=1192 $$ functional identities that, apart from being amazingly amusing by themselves, find applications in derivation of Ramanujan-type formulas for $1/\pi$ and in computation of mathematical constants
Autor:
Victor J. W. Guo, Wadim Zudilin
Publikováno v:
Journal of Mathematical Analysis and Applications, 475, 1636-1646
Journal of Mathematical Analysis and Applications, 475, 2, pp. 1636-1646
Journal of Mathematical Analysis and Applications, 475, 2, pp. 1636-1646
There are many instances known when the Fourier coefficients of modular forms are congruent to partial sums of hypergeometric series. In our previous work arXiv:1803.01830, such partial sums are related to the radial asymptotics of infinite $q$-hyper
Autor:
Wadim Zudilin
Publikováno v:
Hardy-Ramanujan Journal, 43, pp. 46-55
Hardy-Ramanujan Journal, 43, 46-55
Hardy-Ramanujan Journal, 43, 46-55
Using an intrinsic $q$-hypergeometric strategy, we generalise Dwork-type congruences $H(p^{s+1})/H(p^s)\equiv H(p^s)/H(p^{s-1})\pmod{p^3}$ for $s=1,2,\dots$ and $p$ a prime, when $H(N)$ are truncated hypergeometric sums corresponding to the periods o