Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Wade SC"'
Autor:
Yuan Lu, Ellen C. Keeley, Eric Barrette, Rhonda M. Cooper-DeHoff, Sanket S. Dhruva, Jenny Gaffney, Ginger Gamble, Bonnie Handke, Chenxi Huang, Harlan M. Krumholz, Caitrin W. McDonough, Wade Schulz, Kathryn Shaw, Myra Smith, Jennifer Woodard, Patrick Young, Keondae Ervin, Joseph S. Ross
Publikováno v:
BMC Cardiovascular Disorders, Vol 24, Iss 1, Pp 1-17 (2024)
Abstract Background Improving hypertension control is a public health priority. However, consistent identification of uncontrolled hypertension using computable definitions in electronic health records (EHR) across health systems remains uncertain. M
Externí odkaz:
https://doaj.org/article/e304d9fa864d47d79b10019f10feec13
Autor:
Georgia Charkoftaki, Reza Aalizadeh, Alvaro Santos-Neto, Wan Ying Tan, Emily A. Davidson, Varvara Nikolopoulou, Yewei Wang, Brian Thompson, Tristan Furnary, Ying Chen, Elsio A. Wunder, Andreas Coppi, Wade Schulz, Akiko Iwasaki, Richard W. Pierce, Charles S. Dela Cruz, Gary V. Desir, Naftali Kaminski, Shelli Farhadian, Kirill Veselkov, Rupak Datta, Melissa Campbell, Nikolaos S. Thomaidis, Albert I. Ko, Yale IMPACT Study Team, David C. Thompson, Vasilis Vasiliou
Publikováno v:
Human Genomics, Vol 17, Iss 1, Pp 1-17 (2023)
Abstract Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and
Externí odkaz:
https://doaj.org/article/2f4a257343224b1581834ef8402d7d6e
Autor:
Raphael A. G. Sherak, Hoomaan Sajjadi, Naveed Khimani, Benjamin Tolchin, Karen Jubanyik, R. Andrew Taylor, Wade Schulz, Bobak J. Mortazavi, Adrian D. Haimovich
Publikováno v:
PLoS ONE, Vol 19, Iss 5 (2024)
Externí odkaz:
https://doaj.org/article/7a00b8f9533246c28cbdc094806fbe99
Autor:
R Andrew Taylor, Aidan Gilson, Wade Schulz, Kevin Lopez, Patrick Young, Sameer Pandya, Andreas Coppi, David Chartash, David Fiellin, Gail D'Onofrio
Publikováno v:
PLoS ONE, Vol 18, Iss 9, p e0291572 (2023)
ObjectiveWe aimed to discover computationally-derived phenotypes of opioid-related patient presentations to the ED via clinical notes and structured electronic health record (EHR) data.MethodsThis was a retrospective study of ED visits from 2013-2020
Externí odkaz:
https://doaj.org/article/7f336088e95f46a69545ebfd989ab165
Autor:
Matt D. T. Hitchings, Otavio T. Ranzani, Murilo Dorion, Tatiana Lang D’Agostini, Regiane Cardoso de Paula, Olivia Ferreira Pereira de Paula, Edlaine Faria de Moura Villela, Mario Sergio Scaramuzzini Torres, Silvano Barbosa de Oliveira, Wade Schulz, Maria Almiron, Rodrigo Said, Roberto Dias de Oliveira, Patricia Vieira Silva, Wildo Navegantes de Araújo, Jean Carlo Gorinchteyn, Jason R. Andrews, Derek A. T. Cummings, Albert I. Ko, Julio Croda
Publikováno v:
Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
Here, the authors investigate the effectiveness of the Oxford-AstraZeneca (ChAdOx1) vaccine during extensive Gamma variant SARS-CoV-2 circulation in São Paulo state, Brazil, and find that a two-dose regime is more effective than one dose against mil
Externí odkaz:
https://doaj.org/article/25345dc94b034a88babc4fab31866050
Autor:
Adrian D. Haimovich, Frederick Warner, H. Patrick Young, Neal G. Ravindra, Arijit Sehanobish, Guannan Gong, Francis Perry Wilson, David vanDijk, Wade Schulz, Richard Andrew Taylor
Publikováno v:
Journal of the American College of Emergency Physicians Open, Vol 1, Iss 4, Pp 569-577 (2020)
Abstract Background The SARS‐CoV‐2 (COVID‐19) virus has wide community spread. The aim of this study was to describe patient characteristics and to identify factors associated with COVID‐19 among emergency department (ED) patients under inves
Externí odkaz:
https://doaj.org/article/05d2a390983d4c498d3460c432ed6ad2
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Remote Sensing, Vol 10, Iss 9, p 1429 (2018)
In this paper, we present a convolutional neural network (CNN)-based method to efficiently combine information from multisensor remotely sensed images for pixel-wise semantic classification. The CNN features obtained from multiple spectral bands are
Externí odkaz:
https://doaj.org/article/ad77d05d827a4ec184947e6af8b67f52
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.