Zobrazeno 1 - 10
of 144
pro vyhledávání: '"WINTERS, ANDREW R."'
Autor:
Glaubitz, Jan, Ranocha, Hendrik, Winters, Andrew R., Schlottke-Lakemper, Michael, Öffner, Philipp, Gassner, Gregor
There is a pressing demand for robust, high-order baseline schemes for conservation laws that minimize reliance on supplementary stabilization. In this work, we respond to this demand by developing new baseline schemes within a nodal discontinuous Ga
Externí odkaz:
http://arxiv.org/abs/2406.14557
In this work, we develop a new hydrostatic reconstruction procedure to construct well-balanced schemes for one and multilayer shallow water flows, including wetting and drying. Initially, we derive the method for a path-conservative finite volume sch
Externí odkaz:
http://arxiv.org/abs/2406.14119
We show that even though the Discontinuous Galerkin Spectral Element Method is stable for hyperbolic boundary-value problems, and the overset domain problem is well-posed in an appropriate norm, the energy of the approximation of the latter is bounde
Externí odkaz:
http://arxiv.org/abs/2405.04668
Autor:
Ranocha, Hendrik, Winters, Andrew R., Schlottke-Lakemper, Michael, Öffner, Philipp, Glaubitz, Jan, Gassner, Gregor J.
Publikováno v:
Journal of Computational Physics, 2024
We use the framework of upwind summation-by-parts (SBP) operators developed by Mattsson (2017, doi:10.1016/j.jcp.2017.01.042) and study different flux vector splittings in this context. To do so, we introduce discontinuous-Galerkin-like interface ter
Externí odkaz:
http://arxiv.org/abs/2311.13888
Autor:
Ersing, Patrick, Winters, Andrew R.
Publikováno v:
Journal of Scientific Computing, Volume 98, article number 62, 2024
We present an entropy stable nodal discontinuous Galerkin spectral element method (DGSEM) for the two-layer shallow water equations on two dimensional curvilinear meshes. We mimic the continuous entropy analysis on the semi-discrete level with the DG
Externí odkaz:
http://arxiv.org/abs/2306.12699
Autor:
Ranocha, Hendrik, Winters, Andrew R., Castro, Hugo Guillermo, Dalcin, Lisandro, Schlottke-Lakemper, Michael, Gassner, Gregor J., Parsani, Matteo
Publikováno v:
Communications on Applied Mathematics and Computation, 2023
We study temporal step size control of explicit Runge-Kutta methods for compressible computational fluid dynamics (CFD), including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations. We demonstrate tha
Externí odkaz:
http://arxiv.org/abs/2209.07037
Publikováno v:
In Journal of Computational Physics 1 January 2025 520
Autor:
Ranocha, Hendrik, Winters, Andrew R., Schlottke-Lakemper, Michael, Öffner, Philipp, Glaubitz, Jan, Gassner, Gregor J.
Publikováno v:
In Journal of Computational Physics 1 January 2025 520
Autor:
Ranocha, Hendrik, Schlottke-Lakemper, Michael, Chan, Jesse, Rueda-Ramírez, Andrés M., Winters, Andrew R., Hindenlang, Florian, Gassner, Gregor J.
Publikováno v:
ACM Transactions on Mathematical Software, 2023
Many modern discontinuous Galerkin (DG) methods for conservation laws make use of summation by parts operators and flux differencing to achieve kinetic energy preservation or entropy stability. While these techniques increase the robustness of DG met
Externí odkaz:
http://arxiv.org/abs/2112.10517
Autor:
Ranocha, Hendrik, Schlottke-Lakemper, Michael, Winters, Andrew R., Faulhaber, Erik, Chan, Jesse, Gassner, Gregor J.
Publikováno v:
Proceedings of the JuliaCon Conferences, 2022
We present Trixi.jl, a Julia package for adaptive high-order numerical simulations of hyperbolic partial differential equations. Utilizing Julia's strengths, Trixi.jl is extensible, easy to use, and fast. We describe the main design choices that enab
Externí odkaz:
http://arxiv.org/abs/2108.06476