Zobrazeno 1 - 10
of 1 711
pro vyhledávání: '"WILLIS, MICHAEL"'
Autor:
Ren, Qiuyu, Willis, Michael
We show that the Khovanov-Rozansky $\mathfrak{gl}_2$ skein lasagna module distinguishes the exotic pair of knot traces $X_{-1}(-5_2)$ and $X_{-1}(P(3,-3,-8))$, an example first discovered by Akbulut. This gives the first analysis-free proof of the ex
Externí odkaz:
http://arxiv.org/abs/2402.10452
Autor:
Stoffregen, Matthew, Willis, Michael
We construct and study a lift of Jones-Wenzl projectors to the setting of Khovanov spectra, and provide a realization of such lifted projectors via a Cooper-Krushkal-like sequence of maps. We also give a polynomial action on the 3-strand spectral pro
Externí odkaz:
http://arxiv.org/abs/2402.10332
For a ribbon knot, it is a folk conjecture that the rank of its knot Floer homology must be 1 modulo 8, and another folk conjecture says the same about reduced Khovanov homology. We give the first counter-examples to both of these folk conjectures, b
Externí odkaz:
http://arxiv.org/abs/2303.04233
Autor:
Manolescu, Ciprian, Willis, Michael
Asaeda-Przytycki-Sikora, Manturov, and Gabrov\v{s}ek extended Khovanov homology to links in $\mathbb{RP}^3$. We construct a Lee-type deformation of their theory, and use it to define an analogue of Rasmussen's s-invariant in this setting. We show tha
Externí odkaz:
http://arxiv.org/abs/2301.09764
Autor:
Altunkaya, James, Li, Xinyu, Adler, Amanda, Feenstra, Talitha, Fridhammar, Adam, Keng, Mi Jun, Lamotte, Mark, McEwan, Phil, Nilsson, Andreas, Palmer, Andrew J., Quan, Jianchao, Smolen, Harry, Tran-Duy, An, Valentine, William, Willis, Michael, Leal, José, Clarke, Philip
Publikováno v:
In Value in Health October 2024 27(10):1338-1347
Autor:
Willis, Michael1 (AUTHOR) m.willis@doctors.org.uk, Colonetti, Efrem2 (AUTHOR), Bakir, Ali3 (AUTHOR), Alame, Yousef Jamal4 (AUTHOR), Annetts, Megan5 (AUTHOR), Aygin, Deren T.6 (AUTHOR), Daou, Amina7 (AUTHOR), Farooq, Sultan8 (AUTHOR), Fine, Nicholas A.1 (AUTHOR), Firat, Gozde9 (AUTHOR), Goozee, Benjamin10 (AUTHOR), Gupta, Anuj Neelesh11 (AUTHOR), Hubbett, Charlotte1 (AUTHOR), Loi, Nicole Shun Yee12 (AUTHOR), Maciejec-Biskup, Laura13 (AUTHOR), Muthukumar, Merline Gabriela14 (AUTHOR), Pott, Jason1 (AUTHOR), Bloom, Benjamin M.1 (AUTHOR), Muiesan, Maria Lorenza2 (AUTHOR), Harris, Tim1 (AUTHOR) m.willis@doctors.org.uk
Publikováno v:
PLoS ONE. 6/14/2024, Vol. 19 Issue 6, p1-10. 10p.
Publikováno v:
Adv. Math. 408 (2022), part A, Paper No. 108581
Given a link in the thickened annulus, its annular Khovanov homology carries an action of the Lie algebra $\mathfrak{sl}_2$, which is natural with respect to annular link cobordisms. We consider the problem of lifting this action to the stable homoto
Externí odkaz:
http://arxiv.org/abs/2011.11234