Zobrazeno 1 - 10
of 78
pro vyhledávání: '"WANG Ya-shu"'
Two (real or complex) $m\times n$ matrices $A$ and $B$ are said to be parallel (resp. triangle equality attaining, or TEA in short) with respect to the spectral norm $\|\cdot\|$ if $\|A+ \mu B\| = \|A\| + \|B\|$ for some scalar $\mu$ with $|\mu|=1$ (
Externí odkaz:
http://arxiv.org/abs/2408.06366
Two vectors $x, y$ in a normed vector space are parallel if there is a scalar $\mu$ with $|\mu| = 1$ such that $\|x+\mu y\| = \|x\| + \|y\|$; they form a triangle equality attaining (TEA) pair if $\|x+y\| = \|x\| + \|y\|$. In this paper, we character
Externí odkaz:
http://arxiv.org/abs/2407.19276
Let ${\bf M}_n(\mathbb{F})$ be the algebra of $n\times n$ matrices over an arbitrary field $\mathbb{F}$. We consider linear maps $\Phi: {\bf M}_n(\mathbb{F}) \rightarrow {\bf M}_r(\mathbb{F})$ preserving matrices annihilated by a fixed polynomial $f(
Externí odkaz:
http://arxiv.org/abs/2302.11170
Autor:
Wang, Ya-Shu, Lu, Xin, Song, Jin-Hui, Li, Xiao, Tao, Xiao-Dong, Meng, Lingyi, Chen, Xu-Lin, Lu, Can-Zhong
Publikováno v:
In Chemical Engineering Journal 15 February 2024 482
A map $\Phi$ between matrices is said to be zero product preserving if $$ \Phi(A)\Phi(B) = 0 \quad \text{whenever}\quad AB = 0. $$ In this paper, we give concrete descriptions of an additive/linear zero product preserver $\Phi: {\bf M}_n(\mathbb{F})
Externí odkaz:
http://arxiv.org/abs/2003.05317
The connection between the commutativity of a family of $n\times n$ matrices and the generalized joint numerical ranges is studied. For instance, it is shown that ${\cal F}$ is a family of mutually commuting normal matrices if and only if the joint n
Externí odkaz:
http://arxiv.org/abs/2002.02768
Let $M_{m,n}$ be the space of $m\times n$ real or complex rectangular matrices. Two matrices $A, B \in M_{m,n}$ are disjoint if $A^*B = 0_n$ and $AB^* = 0_m$. In this paper, a characterization is given for linear maps $\Phi: M_{m,n} \rightarrow M_{r,
Externí odkaz:
http://arxiv.org/abs/1903.03456
Publikováno v:
In Food Chemistry: X 30 June 2023 18
Autor:
Wang, Ya-Shu, Zhao, Tianxiang, Song, Jin-Hui, Tao, Xiao-Dong, Zhang, Dong-Hai, Meng, Lingyi, Chen, Xu-Lin, Lu, Can-Zhong
Publikováno v:
In Chemical Engineering Journal 15 March 2023 460
Under the right conditions on a compact metric space $X$ and on a Banach space $E$, we give a description of the $2$-local (standard) isometries on the Banach space $\hbox{Lip}(X,E)$ of vector-valued Lipschitz functions from $X$ to $E$ in terms of a
Externí odkaz:
http://arxiv.org/abs/1708.02897