Zobrazeno 1 - 10
of 82
pro vyhledávání: '"WANG Hai-wen"'
Publikováno v:
In Wear 30 April 2019 426-427 Part B:1719-1728
Publikováno v:
Mining & Metallurgy (10057854); Oct2021, Vol. 30 Issue 5, p1-5, 5p
Publikováno v:
ITM Web of Conferences, Vol 7, p 05008 (2016)
Collaborative filtering algorithms make use of interactions rates between users and items for generating recommendations. Similarity among users or items is calculated based on rating mostly, without considering explicit properties of users or items
Externí odkaz:
https://doaj.org/article/94ec8e23f1a04448b9f9b7e0457c1c83
Autor:
Liu Changjiang, Wang Hai-wen
Publikováno v:
Journal of Petroleum Science and Engineering. 207:109167
The main types of non-rod pumps such as the electrical submarine, piston, and jet pumps often have high discharge capacities. In this paper, the process parameters design method of a new non-rod gas-driven pump is proposed for carrying coal power, lo
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Research & Exploration in Laboratory. Apr2014, Vol. 33 Issue 4, p26-32. 4p.
Publikováno v:
Computer Science and Information Systems. 12:1375-1389
Latent Dirichlet Allocation (LDA) has been used to generate text corpora topics recently. However, not all the estimated topics are of equal importance or correspond to genuine themes of the domain. Some of the topics can be a collection of irrelevan
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Trustcom/BigDataSE/ISPA
Sentence ordering is different but important for multi-document summarization. In this paper, we propose a topic approach to sentence ordering for generic multi-document summarization. We use LDA model to calculate sentence weight and similarity betw
Publikováno v:
2016 Chinese Control and Decision Conference (CCDC).
Latent Dirichlet Allocation (LDA) has been used to generate text corpora topics recently. The basic idea of most LDA is that documents are represented as random mixtures over latent topics, each topic is characterized by a distribution over words. Ho