Zobrazeno 1 - 10
of 5 100
pro vyhledávání: '"WANG, Shen"'
Autor:
Yan, Yibo, Su, Jiamin, He, Jianxiang, Fu, Fangteng, Zheng, Xu, Lyu, Yuanhuiyi, Wang, Kun, Wang, Shen, Wen, Qingsong, Hu, Xuming
Mathematical reasoning, a core aspect of human cognition, is vital across many domains, from educational problem-solving to scientific advancements. As artificial general intelligence (AGI) progresses, integrating large language models (LLMs) with ma
Externí odkaz:
http://arxiv.org/abs/2412.11936
Autor:
Liu, Mengchen, Hong, Jessica J., Sebti, Elias, Zhou, Ke, Wang, Shen, Feng, Shijie, Pennebaker, Tyler, Hui, Zeyu, Miao, Qiushi, Lu, Ershuang, Harpak, Nimrod, Yu, Sicen, Zhou, Jianbin, Oh, Jeong Woo, Song, Min-Sang, Luo, Jian, Clément, Raphaële J., Liu, Ping
Sulfide solid state electrolytes are promising candidates to realize all solid state batteries due to their superior ionic conductivity and excellent ductility. However, their hypersensitivity to moisture requires processing environments that are not
Externí odkaz:
http://arxiv.org/abs/2412.04633
Impact flashes on the moon are caused by high-speed collisions of celestial bodies with the lunar surface. The study of the impacts is critical for exploring the evolutionary history and formation of the Moon, and for quantifying the risk posed by th
Externí odkaz:
http://arxiv.org/abs/2412.03141
Autor:
Yan, Yibo, Wang, Shen, Huo, Jiahao, Li, Hang, Li, Boyan, Su, Jiamin, Gao, Xiong, Zhang, Yi-Fan, Xu, Tianlong, Chu, Zhendong, Zhong, Aoxiao, Wang, Kun, Xiong, Hui, Yu, Philip S., Hu, Xuming, Wen, Qingsong
As the field of Multimodal Large Language Models (MLLMs) continues to evolve, their potential to revolutionize artificial intelligence is particularly promising, especially in addressing mathematical reasoning tasks. Current mathematical benchmarks p
Externí odkaz:
http://arxiv.org/abs/2410.04509
Students frequently make mistakes while solving mathematical problems, and traditional error correction methods are both time-consuming and labor-intensive. This paper introduces an innovative \textbf{V}irtual \textbf{A}I \textbf{T}eacher system desi
Externí odkaz:
http://arxiv.org/abs/2409.09403
In addressing the persistent challenges of data-sparsity and cold-start issues in domain-expert recommender systems, Cross-Domain Recommendation (CDR) emerges as a promising methodology. CDR aims at enhancing prediction performance in the target doma
Externí odkaz:
http://arxiv.org/abs/2409.04540
Autor:
Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D, Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, Zhou, Hao, Wissel, Stephanie, Zeolla, Andrew, Deaconu, Cosmin, Hughes, Kaeli, Martin, Zachary, Mulrey, Katharine, Cummings, Austin, Krömer, Oliver, Plant, Kathryn, Schroeder, Frank G.
This is an index of the contributions by the Giant Radio Array for Neutrino Detection (GRAND) Collaboration to the 10th International Workshop on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2024, University of Chicago, June 11-14, 202
Externí odkaz:
http://arxiv.org/abs/2409.03427
Autor:
GRAND Collaboration, Batista, Rafael Alves, Benoit-Lévy, Aurélien, Bister, Teresa, Bohacova, Martina, Bustamante, Mauricio, Carvalho, Washington, Chen, Yiren, Cheng, LingMei, Chiche, Simon, Colley, Jean-Marc, Correa, Pablo, Laurenciu, Nicoleta Cucu, Dai, Zigao, de Almeida, Rogerio M., de Errico, Beatriz, de Jong, Sijbrand, Neto, João R. T. de Mello, de Vries, Krijn D., Decoene, Valentin, Denton, Peter B., Duan, Bohao, Duan, Kaikai, Engel, Ralph, Erba, William, Fan, Yizhong, Ferrière, Arsène, Gou, QuanBu, Gu, Junhua, Guelfand, Marion, Guo, Jianhua, Guo, Yiqing, Guépin, Claire, Gülzow, Lukas, Haungs, Andreas, Havelka, Matej, He, Haoning, Hivon, Eric, Hu, Hongbo, Huang, Xiaoyuan, Huang, Yan, Huege, Tim, Jiang, Wen, Koirala, Ramesh, Kong, ChuiZheng, Kotera, Kumiko, Köhler, Jelena, Lago, Bruno L., Lai, Zhisen, Coz, Sandra Le, Legrand, François, Leisos, Antonios, Li, Rui, Li, Xingyu, Li, YiFei, Liu, Cheng, Liu, Ruoyu, Liu, Wei, Ma, Pengxiong, Macias, Oscar, Magnard, Frédéric, Marcowith, Alexandre, Martineau-Huynh, Olivier, McKinley, Thomas, Minodier, Paul, Mitra, Pragati, Mostafá, Miguel, Murase, Kohta, Niess, Valentin, Nonis, Stavros, Ogio, Shoichi, Oikonomou, Foteini, Pan, Hongwei, Papageorgiou, Konstantinos, Pierog, Tanguy, Piotrowski, Lech Wiktor, Prunet, Simon, Qian, Xiangli, Roth, Markus, Sako, Takashi, Schoorlemmer, Harm, Szálas-Motesiczky, Dániel, Sławiński, Szymon, Tian, Xishui, Timmermans, Anne, Timmermans, Charles, Tobiska, Petr, Tsirigotis, Apostolos, Tueros, Matías, Vittakis, George, Wang, Hanrui, Wang, Jiale, Wang, Shen, Wang, Xiangyu, Wang, Xu, Wei, Daming, Wei, Feng, Wu, Xiangping, Wu, Xuefeng, Xu, Xin, Xu, Xing, Yang, Fufu, Yang, Lili, Yang, Xuan, Yuan, Qiang, Zarka, Philippe, Zeng, Houdun, Zhang, Chao, Zhang, Jianli, Zhang, Kewen, Zhang, Pengfei, Zhang, Qingchi, Zhang, Songbo, Zhang, Yi, Zhou, Hao
Publikováno v:
Computer Physics Communications, volume=308, pages=109461, issn=0010-4655 (2025)
The operation of upcoming ultra-high-energy cosmic-ray, gamma-ray, and neutrino radio-detection experiments, like the Giant Radio Array for Neutrino Detection (GRAND), poses significant computational challenges involving the production of numerous si
Externí odkaz:
http://arxiv.org/abs/2408.10926
Autor:
Cao, Jiangxia, Wang, Shen, Li, Yue, Wang, Shenghui, Tang, Jian, Wang, Shiyao, Yang, Shuang, Liu, Zhaojie, Zhou, Guorui
Kuaishou, is one of the largest short-video and live-streaming platform, compared with short-video recommendations, live-streaming recommendation is more complex because of: (1) temporarily-alive to distribution, (2) user may watch for a long time wi
Externí odkaz:
http://arxiv.org/abs/2408.05709
Autor:
Rong, Huanyao, Duan, Yue, Zhang, Hang, Wang, XiaoFeng, Chen, Hongbo, Duan, Shengchen, Wang, Shen
Disassembly is a challenging task, particularly for obfuscated executables containing junk bytes, which is designed to induce disassembly errors. Existing solutions rely on heuristics or leverage machine learning techniques, but only achieve limited
Externí odkaz:
http://arxiv.org/abs/2407.08924