Zobrazeno 1 - 10
of 10
pro vyhledávání: '"W. S. Martindale"'
Autor:
Matej Brešar, W. S. Martindale rd
Publikováno v:
Communications in Algebra. 34:2195-2203
Given a positive integer n, we show there is a positive integer f(n) with the following property. Let R be a prime ring with extended centroid C, and let a 1,a 2,…,a n be C-independent elements of R. Then there is an element in the multiplication r
Publikováno v:
Communications in Algebra. 21:4679-4697
The first author was partially supported by the Ministry of Science and Technology of Slovenia. The third author was partially supported by NSERC of Canada.
Publikováno v:
Transactions of the American Mathematical Society; Oct2001, Vol. 353 Issue 10, p4235-4260, 26p
Autor:
H. E. Bell, W. S. Martindale
Publikováno v:
Canadian Mathematical Bulletin. 30:92-101
Let R be a ring with center Z, and S a nonempty subset of R. A mapping F from R to R is called centralizing on S if [x, F(x)] ∊ Z for all x ∊ S. We show that a semiprime ring R must have a nontrivial central ideal if it admits an appropriate endo
Autor:
H. E. Bell, W. S. Martindale
Publikováno v:
Canadian Mathematical Bulletin. 31:500-508
A semiderivation of a ring R is an additive mapping f:R → R together with a function g:R → R such that f(xy) = f(x)g(y) + xf(y) = f(x)y + g(x)f(y) and f(g(x) ) = g(f(x)) for all x, y ∊ R. Motivating examples are derivations and mappings of the
Autor:
K. McCrimmon, W. S. Martindale
Publikováno v:
Proceedings of the American Mathematical Society. 103:1031-1036
Zelmanov’s structure theory for prime Jordan algebras works directly with semiprimitive algebras, and the results are extended to nondegenerate algebras using properties of the free Jordan algebra. Here we show how Amitsur’s direct power trick of
Autor:
W. S. Martindale
Publikováno v:
Journal of the London Mathematical Society. :213-221
Autor:
W. S. Martindale, W. E. Baxter
Publikováno v:
Canadian Journal of Mathematics. 20:465-473
An involution * of a ring A is a one-one additive mapping of A onto itself such that (xy)* = y*x* and x** = x for all x, y ∊ A. If A is an algebra over a field Φ, one makes the additional requirement that (λx)* = λx* for all λ ∊ Φ, x ∊ A.
Autor:
C. Robert Miers, W. S. Martindale rd
Publikováno v:
Journal of Algebra. (1):94-115
Let R be a ★-prime ring with skew elements K , extended centroid C , and central closure RC . For U , W ⊂- R we define U n ( W ) inductively: U (1) ( W ) = [ U , W ], U ( n + 1) ( W ) = [ U , U ( n ) ( W )]. An additive subgroup V of K is called
Autor:
W. S. Martindale, C. R. Miers
Publikováno v:
Methods in Ring Theory ISBN: 9789400963719
A semiprime nonassociative ring A is strongly semiprime if for all n, given A ⊃ U1 ⊃ U2 ⊃ ⋯ Un ≠ 0 with Ui an ideal of Ui-1, there exists an ideal W of A such that 0 ≠ W ⊂ Un. Let R be a 2-torsion free semiprime associative ring with in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::05938eb3366dee5666bed8da640aff91
https://doi.org/10.1007/978-94-009-6369-6_21
https://doi.org/10.1007/978-94-009-6369-6_21