Zobrazeno 1 - 10
of 16
pro vyhledávání: '"W. Oberste"'
A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and defini
A Bridge to Abstract Mathematics will prepare the mathematical novice to explore the universe of abstract mathematics. Mathematics is a science that concerns theorems that must be proved within the constraints of a logical system of axioms and defini
Autor:
Ralph W. Oberste-Vorth
Publikováno v:
Nonlinear Analysis. 47:5691-5696
Publikováno v:
Indiana University Mathematics Journal. 50:553-566
We will study in this paper diffeomorphisms f : S3 → S3 with two invariant linked solenoids Σ+, Σ−, one attracting and one repelling. We will call such mappings linked solenoid mappings. Such mappings arise when studying Henon mappings in C2, a
Autor:
Ralph W. Oberste-Vorth
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 30:2143-2154
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9781461473329
We construct the topological framework within which we can study the solution space for a given dynamic equation on time scales. We call these the Hausdorff-Fell topologies. The space of finite time scales is dense in the space of all time scales und
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7db739d0aa03f16f04c34f356c20bd2b
https://doi.org/10.1007/978-1-4614-7333-6_49
https://doi.org/10.1007/978-1-4614-7333-6_49
Publikováno v:
Publications mathématiques de l'IHÉS. 79:5-46
Publikováno v:
Difference Equations, Special Functions and Orthogonal Polynomials.
Autor:
Ralph W. Oberste-Vorth, Kelli J. Hall
Publikováno v:
Difference Equations, Special Functions and Orthogonal Polynomials.
Publikováno v:
Real and Complex Dynamical Systems ISBN: 9789048145652
Let H: ℂ2 → ℂ2 be the Henon mapping given by $$ \left[ {_y^x} \right] \mapsto \left[ {_x^{p(x) - ay}} \right] $$ The key invariant subsets are K ±, the sets of points with bounded forward images, J ± = ∂K ±, their boundaries, J = J + ∩ J
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4f26b4a4fca6e29e8e5cdbea291aa068
https://doi.org/10.1007/978-94-015-8439-5_5
https://doi.org/10.1007/978-94-015-8439-5_5