Zobrazeno 1 - 8
of 8
pro vyhledávání: '"W. M. Zaja̧czkowski"'
Autor:
W. M. Zaja̧czkowski, K. Pileckas
Publikováno v:
Mathematische Zeitschrift. 260:305-327
In this paper we prove the existence of regular solutions to the Navier–Stokes equations if the initial data v0 have some finite weighted norm and supp v0 belongs to \(\mathbb {R}^3{\setminus}B_{R_0}\) , \(B_{R_0}\) is a ball with radius R0, where
Autor:
W. M. Zaja̧czkowski
Publikováno v:
Journal of Applied Analysis. 4:167-204
Global existence of solutions of equations of compressible barotropic viscous fluids in a bounded domain with boundary slip condition which are sufficiently close to a rest state is proved. Moreover, stability of the solutions and existence of corres
Autor:
W. M. Zajaczkowski
Publikováno v:
SIAM Journal on Mathematical Analysis. 25:1-84
The author considers the motion of a viscous compressible barotropic fluid in $\mathbb{R}^3 $, bounded by a free surface that is under surface tension and constant exterior pressure. Assuming the initial density is sufficiently close to a constant, t
Autor:
D. Wrzosek, W. M. Zaja̧czkowski
Publikováno v:
Journal of Applied Analysis. 5
Existence of weak solutions for systems of quasilinear de- generate parabolic equations with non-diagonal main part and nonlinear boundary conditions is proved. Under some restrictions we nd also L 1 - bounds for the solutions.
Autor:
W. M. Zaja̧czkowski
Publikováno v:
Journal of Applied Analysis. 1
Autor:
W. M. Zaja̧czkowski
Publikováno v:
Mathematical Methods in the Applied Sciences; Jan2007, Vol. 30 Issue 2, p123-151, 29p
Publikováno v:
Applicable Analysis. 15:91-114
AMS (MOS) Subject Classification 76N10, 35G30 The existence and uniqueness of solutions, in Sobolev spaces, of the initial boundary value problem, global in time for the set of equations describing the flow of a barotropic viscous gas is investigated
Autor:
W. M. Zajaczkowski
Publikováno v:
Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications ISBN: 9783528080983
The aim of this paper is to show the existence and uniqueness of classical, global in time solutions for a mixed problem for a quasilinear symmetric hyperbolic system of the first order with dissipation. The proof is divided into three parts. At firs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3f5041b1e9061433e8daf506ff9c37ad
https://doi.org/10.1007/978-3-322-87869-4_67
https://doi.org/10.1007/978-3-322-87869-4_67