Zobrazeno 1 - 10
of 2 031
pro vyhledávání: '"W. J. Baker"'
Publikováno v:
The Business History Review, 1973 Oct 01. 47(3), 401-404.
Externí odkaz:
https://www.jstor.org/stable/3113290
Publikováno v:
Economic Botany, 1950 Oct 01. 4(4), 386-388.
Externí odkaz:
https://www.jstor.org/stable/4251999
Autor:
Thomas, A. V.
Publikováno v:
The Commonwealth Forestry Review, 1963 Sep 01. 423 (113), 267-268.
Externí odkaz:
https://www.jstor.org/stable/42603056
Autor:
DRANSFIELD, JOHN1 j.dransfield@kew.org, EISERHARDT, WOLF L.2 wolf.eiserhardt@bio.ati.dk, MARCUS, JEFF3 info@floribulidaptilms.com, BAKER, WILLIAM J.1 w.baker@kew.org
Publikováno v:
Palms. Jun2023, Vol. 67 Issue 2, p79-88. 10p.
Publikováno v:
The British Journal for the History of Science, 1971 Dec 01. 5(4), 412-413.
Externí odkaz:
https://www.jstor.org/stable/4025398
Autor:
M. A. Broome, S. K. Gorman, M. G. House, S. J. Hile, J. G. Keizer, D. Keith, C. D. Hill, T. F. Watson, W. J. Baker, L. C. L. Hollenberg, M. Y. Simmons
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-7 (2018)
Donor impurities in silicon are promising candidates as qubits but in order to create a large-scale quantum computer inter-qubit coupling must be introduced by precise positioning of the donors. Here the authors demonstrate the fabrication, manipulat
Externí odkaz:
https://doaj.org/article/8bb6375d8b1f4be487168b3beb3afb69
Autor:
Hugh G. J. Aitken
Publikováno v:
Business History Review. 47:401-404
Autor:
DRANSFIELD, JOHN1 j.dranslield@kew.org, MARCUS, JEFF2 info@floribmidapalms.com, BAKER, WILLIAM J.1 w.baker@kew.org
Publikováno v:
Palms. Jun2023, Vol. 67 Issue 2, p89-97. 9p.
Autor:
S, Bellot, Y, Lu, A, Antonelli, W J, Baker, J, Dransfield, F, Forest, W D, Kissling, I J, Leitch, E, Nic Lughadha, I, Ondo, S, Pironon, B E, Walker, R, Cámara-Leret, S P, Bachman
Publikováno v:
Nature ecologyevolution. 6(11)
Protecting nature's contributions to people requires accelerating extinction risk assessment and better integrating evolutionary, functional and used diversity with conservation planning. Here, we report machine learning extinction risk predictions f