Zobrazeno 1 - 10
of 13
pro vyhledávání: '"W. F. Lindgren"'
Autor:
Andrzej Szymanski, W. F. Lindgren
Publikováno v:
Proceedings of the American Mathematical Society. 125:3741-3746
We show that under Martin’s axiom there are 22 ω spaces which are countably compact extremally disconnected homogeneous such that the product of any two them is not pseudocompact. The spaces are modeled on
Autor:
W. F. Lindgren, Andrzej Szymanski
Publikováno v:
Annals of the New York Academy of Sciences. 767:108-114
Autor:
W. F. Lindgren, A. A. Szymanski
Publikováno v:
Proceedings of the American Mathematical Society; Dec1997, Vol. 125 Issue 12, p3741-3746, 6p
Autor:
W. F. Lindgren, W. N. Hunsaker
Publikováno v:
Quaestiones Mathematicae. 3:27-31
Theorem. Let X have a Hausdorff compactification YX with | Clγ X (γ X—x)| ⋚ x0. The following are equivalent: γ X—X is p-embedded in γ X every point of γ X—X has a countable base in γ X. X is a-compact.
Autor:
P. Fletcher, W. F. Lindgren
Publikováno v:
Glasgow Mathematical Journal. 28:31-36
The notation and terminology of this paper coincide with that of reference [4], except that here the term, compactification, refers to a T1-space. It is known that a completely regular totally bounded Hausdorff quasi-uniform space (X, ) has a Hausdor
Autor:
P. Fletcher, W. F. Lindgren
Publikováno v:
Archiv der Mathematik. 30:175-180
Autor:
W. F. Lindgren, P. Fletcher
Publikováno v:
Canadian Journal of Mathematics. 31:35-44
Let (X, ) be a topological space equipped with a partial order ≦ and let C (≦) denote the continuous increasing functions mapping X into R (a function f : X → R is increasing provided f(x) ≦ f(y) whenever x ≦ y) Then (X,, ≦) is an N-space
Autor:
W. F. Lindgren
Publikováno v:
Canadian Mathematical Bulletin. 14:369-372
In [ 2 ] P. Fletcher proved that a finite topological space has a unique compatible quasi-uniformity; C. Barnhill and P. Fletcher showed in [1] that a topological space (X, ), with finite, has a unique compatible quasiuniformity. In this note we give
Autor:
M. N. Brearley, J. S. Haines, Maurice Machover, S. J. Bernau, D. A. Pellett, K. A. Bush, G. R. Blakley, W. E. Coppage, R. D. Dixon, M. Satyanarayana, D. P. Giesy, W. F. Lindgren, A. R. Amir-Moéz, J. A. Eagon, Roy Leipnik, R. Oberg, R. A. Whiteman, R. C. Entringer, J. L. Chrislock, A. A. Mullin, Gideon Peyser, J. W. Brown, Fred Gross, T. L. Hayden, James Duemmel, J. J. Malone
Publikováno v:
The American Mathematical Monthly. 74:1077-1112
Autor:
P. Fletcher, W. F. Lindgren
Publikováno v:
Duke Math. J. 41, no. 1 (1974), 231-240
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b6e2bd66f924a1700b4fd48a7a01d46d
http://projecteuclid.org/euclid.dmj/1077310243
http://projecteuclid.org/euclid.dmj/1077310243