Zobrazeno 1 - 10
of 324
pro vyhledávání: '"WŁodarczyk, JarosŁaw"'
Autor:
Włodarczyk, Jarosław
We extend the Cox-Hu-Keel construction of the Cox rings to any proper birational morphisms of normal noetherian schemes. It allows the representation of any proper birational morphism by a map of schemes with mild singularities with torus actions. In
Externí odkaz:
http://arxiv.org/abs/2301.12452
Autor:
Włodarczyk, Jarosław
We show a simple and fast embedded resolution of varieties and principalization of ideals in the language of torus actions on ambient smooth schemes with or without SNC divisors. The canonical functorial resolution of varieties in characteristic zero
Externí odkaz:
http://arxiv.org/abs/2203.03090
Autor:
Włodarczyk, Jarosław
Let $X$ be any variety in characteristic zero. Let $V \subset X$ be an open subset that has toroidal singularities. We show the existence of a canonical desingularization of $X$ except for V. It is a morphism $f: Y \to X$ , which does not modify the
Externí odkaz:
http://arxiv.org/abs/2007.13846
In characteristic zero, we construct relative principalization of ideals for logarithmically regular morphisms of logarithmic schemes, and use it to construct logarithmically regular desingularization of morphisms. These constructions are relatively
Externí odkaz:
http://arxiv.org/abs/2003.03659
Publikováno v:
Alg. Number Th. 18 (2024) 1557-1587
We provide a procedure for resolving, in characteristic 0, singularities of a variety $X$ embedded in a smooth variety $Y$ by repeatedly blowing up the worst singularities, in the sense of stack-theoretic weighted blowings up. No history, no exceptio
Externí odkaz:
http://arxiv.org/abs/1906.07106
In this largely expository article, we present a Kawamata-Viehweg type formulation of the (logarithmic) Akizuki-Nakano Vanishing Theorem. While the result is likely known to the experts, it does not seem to appear in the existing literature.
Com
Com
Externí odkaz:
http://arxiv.org/abs/1806.01137
Autor:
Włodarczyk, Jarosław
Publikováno v:
In Advances in Mathematics 8 October 2022 407
Publikováno v:
Alg. Number Th. 14 (2020) 2001-2035
We show that any toroidal DM stack $X$ with finite diagonalizable inertia possesses a maximal toroidal coarsening $X_{tcs}$ such that the morphism $X\to X_{tcs}$ is logarithmically smooth. Further, we use torification results of [AT17] to construct a
Externí odkaz:
http://arxiv.org/abs/1709.03206
Given an ideal $\mathcal I$ on a variety $X$ with toroidal singularities, we produce a modification $X' \to X$, functorial for toroidal morphisms, making the ideal monomial on a toroidal stack $X'$. We do this by adapting the methods of [W{\l}o05], d
Externí odkaz:
http://arxiv.org/abs/1709.03185
Publikováno v:
Polonia Sacra / Sacred Poland. 26(3):113-132
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=1076679