Zobrazeno 1 - 10
of 156
pro vyhledávání: '"Vyacheslav Futorny"'
Publikováno v:
Bulletin of Mathematical Sciences, Vol 11, Iss 3, Pp 2130001-1-2130001-109 (2021)
We provide a classification and an explicit realization of all simple Gelfand–Tsetlin modules of the complex Lie algebra 𝔰𝔩(3). The realization of these modules, including those with infinite-dimensional weight spaces, is given via regular an
Externí odkaz:
https://doaj.org/article/4315202a6ce34927808ef5e78ae5661e
Autor:
Abdullah Alazemi, Milica Anđelić, Carlos M. da Fonseca, Vyacheslav Futorny, Vladimir V. Sergeichuk
Publikováno v:
Mathematics, Vol 9, Iss 5, p 455 (2021)
We consider systems of bilinear forms and linear maps as representations of a graph with undirected and directed edges. Its vertices represent vector spaces; its undirected and directed edges represent bilinear forms and linear maps, respectively. We
Externí odkaz:
https://doaj.org/article/9b055c490d1046e89012973d1066f119
Autor:
Vyacheslav Futorny, Iryna Kashuba
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 026 (2009)
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of
Externí odkaz:
https://doaj.org/article/425342b7843a4a3caf744eb7c65c6bb5
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We use induction from parabolic subalgebras with infinite-dimensional Levi factor to construct new families of irreducible representations for arbitrary affine Kac-Moody algebras. Our first construction defines a functor from the category of Whittake
Autor:
Vyacheslav Futorny
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
Most significant contributions to the Representation Theory of Lie algebras by the members of the research group of IME-USP and their collaborators are described. The focus is made on the Gelfand-Tsetlin theories, representations of affine Kac-Moody
Publikováno v:
Linear Algebra and its Applications. 614:455-499
We give new proofs of several known results about perturbations of matrix pencils. In particular, we give a direct and constructive proof of Andrzej Pokrzywa's theorem (1983), in which the closure of the orbit of each Kronecker canonical matrix penci
Publikováno v:
Mathematical Research Letters. 28:1379-1418
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this note, we define one more way of quantization of classical systems. The quantization we consider is an analogue of classical Jordan–Schwinger map which has been known and used for a long time by physicists. The difference, compared to Jordan
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
We introduce the notion of essential support of a simple Gelfand-Tsetlin $\mathfrak{gl}_n$-module as an important tool towards understanding the character formula of such module. This support detects the weights in the module having maximal possible
Autor:
Vyacheslav Futorny, João Schwarz
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We prove that an invariant subalgebra A n W of the Weyl algebra A n is a Galois order over an adequate commutative subalgebra Γ when W is a two-parameters irreducible unitary reflection group G ( m , 1 , n ) , m ≥ 1 , n ≥ 1 , including the Weyl