Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Vyacheslav A Demin"'
Autor:
Anna N. Matsukatova, Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni, Anton A. Minnekhanov, Andrey D. Trofimov, Aleksandr A. Nesmelov, Sergey A. Zavyalov, Yulia N. Malakhova, Matteo Parmeggiani, Alberto Ballesio, Simone Luigi Marasso, Sergey N. Chvalun, Vyacheslav A. Demin, Andrey V. Emelyanov, Victor Erokhin
Publikováno v:
Advanced Intelligent Systems, Vol 5, Iss 6, Pp n/a-n/a (2023)
Nowadays, neuromorphic systems based on memristors are considered promising approaches to the hardware realization of artificial intelligence systems with efficient information processing. However, a major bottleneck in the physical implementation of
Externí odkaz:
https://doaj.org/article/afe53d1d20d64d4897e6a0f78f99dadb
Autor:
Alexey N. Mikhaylov, Sergey A. Shchanikov, Vyacheslav A. Demin, Valeri A. Makarov, Victor B. Kazantsev
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
Externí odkaz:
https://doaj.org/article/c9df146534bc419cbb15e5dfe3dac1cc
Autor:
Dinar N. Masaev, Alina A. Suleimanova, Nikita V. Prudnikov, Mariia V. Serenko, Andrey V. Emelyanov, Vyacheslav A. Demin, Igor A. Lavrov, Max O. Talanov, Victor V. Erokhin
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
Existing methods of neurorehabilitation include invasive or non-invasive stimulators that are usually simple digital generators with manually set parameters like pulse width, period, burst duration, and frequency of stimulation series. An obvious lac
Externí odkaz:
https://doaj.org/article/292c6ece758542998bb12331d166e4b4
Autor:
Anna N. Matsukatova, Aleksandr I. Iliasov, Kristina E. Nikiruy, Elena V. Kukueva, Aleksandr L. Vasiliev, Boris V. Goncharov, Aleksandr V. Sitnikov, Maxim L. Zanaveskin, Aleksandr S. Bugaev, Vyacheslav A. Demin, Vladimir V. Rylkov, Andrey V. Emelyanov
Publikováno v:
Nanomaterials, Vol 12, Iss 19, p 3455 (2022)
Convolutional neural networks (CNNs) have been widely used in image recognition and processing tasks. Memristor-based CNNs accumulate the advantages of emerging memristive devices, such as nanometer critical dimensions, low power consumption, and fun
Externí odkaz:
https://doaj.org/article/7db577f9447f464c890685f1881e4389
Autor:
Anna N. Matsukatova, Artem Yu. Vdovichenko, Timofey D. Patsaev, Pavel A. Forsh, Pavel K. Kashkarov, Vyacheslav A. Demin, Andrey V. Emelyanov
Publikováno v:
Nano Research. 16:3207-3214
Autor:
Nikita V. Prudnikov, Vsevolod A. Kulagin, Silvia Battistoni, Vyacheslav A. Demin, Victor V. Erokhin, Andrey V. Emelyanov
Publikováno v:
physica status solidi (a).
Publikováno v:
Nanobiotechnology Reports. 16:253-260
The development of neuromorphic systems based on spiking neural networks with memristive synaptic weights (nanostructured elements of electrically rewritable nonvolatile memory) is a promising direction in hardware design for solving artificial intel
Autor:
Vyacheslav A. Demin, Sergey S. Pavlov, Marina Frontasyeva, Inga Zinicovscaia, A. L. Ivlieva, D. A. Rogatkin, A. A. Glazkov, E. N. Petritskaya
Publikováno v:
Physics of Particles and Nuclei Letters. 18:250-265
To assess the effect of silver nanoparticles on mice cognitive abilities, daily, up to 4-month period, experimental mice were administrated with silver nanoparticles solution. Accumulation of silver in brain was assessed by neutron activation analysi
Autor:
Dmitry V. Nekhaev, Andrey V. Emelyanov, Mikhail V. Kovalchuk, Vladimir V. Rylkov, Vyacheslav A. Demin, Igor A. Surazhevsky, K. E. Nikiruy, Sergey Nikolaev
Publikováno v:
Neural Networks. 134:64-75
This work is aimed to study experimental and theoretical approaches for searching effective local training rules for unsupervised pattern recognition by high-performance memristor-based Spiking Neural Networks (SNNs). First, the possibility of weight
Autor:
V. V. Rylkov, A. A. Minnekhanov, A. N. Matsukatova, Vyacheslav A. Demin, Pavel A. Forsh, Pavel K. Kashkarov, Andrey V. Emelyanov
Publikováno v:
JETP Letters. 112:357-363
Effects of second-order resistive switching in memristors based on poly-p-xylylene have been detected for the first time. It has been shown that these memristive structures constitute a dynamic system whose behavior significantly depends on second-or