Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Voulis, Igor"'
This paper presents a unifying framework for Trefftz-like methods, which allows the analysis and construction of discretization methods based on the decomposition into, and coupling of, local and global problems. We apply the framework to provide a c
Externí odkaz:
http://arxiv.org/abs/2412.00806
The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solut
Externí odkaz:
http://arxiv.org/abs/2403.13770
In this paper we present a new H(div)-conforming unfitted finite element method for the mixed Poisson problem which is robust in the cut configuration and preserves conservation properties of body-fitted finite element methods. The key is to formulat
Externí odkaz:
http://arxiv.org/abs/2306.12722
We construct four variants of space-time finite element discretizations based on linear tensor-product and simplex-type finite elements. The resulting discretizations are continuous in space, and continuous or discontinuous in time. In a first test r
Externí odkaz:
http://arxiv.org/abs/2206.01423
Autor:
Bachmayr, Markus, Voulis, Igor
The subject of this work is a new stochastic Galerkin method for second-order elliptic partial differential equations with random diffusion coefficients. It combines operator compression in the stochastic variables with tree-based spline wavelet appr
Externí odkaz:
http://arxiv.org/abs/2109.09136
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Voulis, Igor, Reusken, Arnold
In this paper a time dependent Stokes problem that is motivated by a standard sharp interface model for the fluid dynamics of two-phase flows is studied. This Stokes interface problem has discontinuous density and viscosity coefficients and a pressur
Externí odkaz:
http://arxiv.org/abs/1803.06339
Autor:
Voulis, Igor, Reusken, Arnold
We consider time discretization methods for abstract parabolic problems with inhomogeneous linear constraints. Prototype examples that fit into the general framework are the heat equation with inhomogeneous (time dependent) Dirichlet boundary conditi
Externí odkaz:
http://arxiv.org/abs/1801.06361
Autor:
Bachmayr, Markus1 bachmayr@igpm.rwth-aachen.de, Voulis, Igor2
Publikováno v:
ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN). Nov/Dec2022, Vol. 56 Issue 6, p1955-1992. 38p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.