Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Vongkulbhisal, Jayakorn"'
Trajectory prediction has gained great attention and significant progress has been made in recent years. However, most works rely on a key assumption that each video is successfully preprocessed by detection and tracking algorithms and the complete o
Externí odkaz:
http://arxiv.org/abs/2203.07098
Autor:
Moing, Guillaume Le, Agravante, Don Joven, Inoue, Tadanobu, Vongkulbhisal, Jayakorn, Munawar, Asim, Tachibana, Ryuki, Vinayavekhin, Phongtharin
This paper introduces an ensemble of discriminators that improves the accuracy of a domain adaptation technique for the localization of multiple sound sources. Recently, deep neural networks have led to promising results for this task, yet they requi
Externí odkaz:
http://arxiv.org/abs/2012.05908
Autor:
Moing, Guillaume Le, Vinayavekhin, Phongtharin, Agravante, Don Joven, Inoue, Tadanobu, Vongkulbhisal, Jayakorn, Munawar, Asim, Tachibana, Ryuki
Deep neural networks have recently led to promising results for the task of multiple sound source localization. Yet, they require a lot of training data to cover a variety of acoustic conditions and microphone array layouts. One can leverage acoustic
Externí odkaz:
http://arxiv.org/abs/2012.05533
Autor:
Moing, Guillaume Le, Vinayavekhin, Phongtharin, Inoue, Tadanobu, Vongkulbhisal, Jayakorn, Munawar, Asim, Tachibana, Ryuki, Agravante, Don Joven
In this paper, we propose novel deep learning based algorithms for multiple sound source localization. Specifically, we aim to find the 2D Cartesian coordinates of multiple sound sources in an enclosed environment by using multiple microphone arrays.
Externí odkaz:
http://arxiv.org/abs/2012.05515
Autor:
Charoenphakdee, Nontawat, Vongkulbhisal, Jayakorn, Chairatanakul, Nuttapong, Sugiyama, Masashi
The focal loss has demonstrated its effectiveness in many real-world applications such as object detection and image classification, but its theoretical understanding has been limited so far. In this paper, we first prove that the focal loss is class
Externí odkaz:
http://arxiv.org/abs/2011.09172
In this paper, we study the problem of unifying knowledge from a set of classifiers with different architectures and target classes into a single classifier, given only a generic set of unlabelled data. We call this problem Unifying Heterogeneous Cla
Externí odkaz:
http://arxiv.org/abs/1904.06062
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence ( Volume: 41, Issue: 4, Apr 2019 )
Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main challenges: (i) designing a cost function with a local optimum at an acceptable solution, and (ii) developing an efficient numerical met
Externí odkaz:
http://arxiv.org/abs/1707.04318
Autor:
Vongkulbhisal, Jayakorn
Publikováno v:
Dissertations.
Many computer vision problems are formulated as the optimization of a cost function. This approach faces two main challenges: (i) designing a cost function with a local optimum at an acceptable solution, and (ii) developing an efficient numerical met
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.