Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Volodymyr Nekrashevych"'
Autor:
Volodymyr Nekrashevych
Publikováno v:
Graduate Studies in Mathematics ISBN: 9781470471194
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e8550fedf5bd493d4d892ea60eb33338
https://doi.org/10.1090/gsm/223
https://doi.org/10.1090/gsm/223
Publikováno v:
Groups, Geometry, and Dynamics. 14:61-79
Autor:
Volodymyr Nekrashevych
Publikováno v:
Bulletin of the American Mathematical Society. 56:165-169
Autor:
Volodymyr Nekrashevych
Publikováno v:
Ergodic Theory and Dynamical Systems. 39:707-732
We associate with every etale groupoid G two normal subgroups S(G) and A(G) of the topological full group of G, which are analogs of the symmetric and alternating groups. We prove that if G is a minimal groupoid of germs (e.g., of a group action), th
Autor:
Volodymyr Nekrashevych
Publikováno v:
Conformal Geometry and Dynamics of the American Mathematical Society. 20:303-358
We are studying topological properties of the Julia set of the map F ( z , p ) = ( ( 2 z p + 1 − 1 ) 2 , ( p − 1 p + 1 ) 2 ) F(z, p)=\left (\left (\frac {2z}{p+1}-1\right )^2, \left (\frac {p-1}{p+1}\right )^2\right ) of the complex projective pl
Autor:
Volodymyr Nekrashevych
Publikováno v:
International Journal of Algebra and Computation. 26:375-397
We study growth and complexity of \'etale groupoids in relation to growth of their convolution algebras. As an application, we construct simple finitely generated algebras of arbitrary Gelfand-Kirillov dimension $\ge 2$ and simple finitely generated
Autor:
Volodymyr Nekrashevych
Publikováno v:
Groups, Geometry, and Dynamics. 8:883-932
We construct Patterson-Sullivan measure and a natural metric on the unit space of a hyperbolic groupoid. In particular, this gives a new approach to defining SRB measures on Smale spaces using Gromov hyperbolic graphs.
36 pages
36 pages
Autor:
Volodymyr Nekrashevych
The author introduces a notion of hyperbolic groupoids, generalizing the notion of a Gromov hyperbolic group. Examples of hyperbolic groupoids include actions of Gromov hyperbolic groups on their boundaries, pseudogroups generated by expanding self-c
Autor:
Volodymyr Nekrashevych
Publikováno v:
Transactions of the American Mathematical Society. 362:389-398
We prove that a sequence of marked three-generated groups isomorphic to the iterated monodromy group of z 2 + i converges to a group of non-uniform exponential growth, which is an extension of the infinite direct sum of cyclic groups of order 4 by a
Autor:
Volodymyr Nekrashevych
Publikováno v:
Holomorphic Dynamics and Renormalization. :25-73