Zobrazeno 1 - 10
of 116
pro vyhledávání: '"Voloch, Jose Felipe"'
Autor:
Perrin, Derek, Voloch, José Felipe
We study $\ell$-isogeny graphs of ordinary elliptic curves defined over $\mathbb{F}_q$ with an added level structure. Given an integer $N$ coprime to $p$ and $\ell,$ we look at the graphs obtained by adding $\Gamma_0(N),$ $\Gamma_1(N),$ and $\Gamma(N
Externí odkaz:
http://arxiv.org/abs/2411.02732
We improve recent results of D. Gomez and A. Winterhof (2010) and of A. Ostafe and I. E. Shparlinski (2011) on the Waring problem with Dickson polynomials in the case of prime finite fields. Our approach is based on recent bounds of Kloosterman and G
Externí odkaz:
http://arxiv.org/abs/2410.08732
Autor:
Moltchanova, Elena, Moyers-González, Miguel, Van de Voorde, Geertrui, Voloch, José Felipe, Wacker, Philipp
In this paper, we consider how probability theory can be used to determine the survival strategy in two of the ``Squid Game" and ``Squid Game: The Challenge" challenges: the Hopscotch and the Warships. We show how Hopscotch can be easily tackled with
Externí odkaz:
http://arxiv.org/abs/2409.05263
Let $C$ and $C'$ be curves over a finite field $K$, provided with embeddings $\iota$ and $\iota'$ into their Jacobian varieties. Let $D\to C$ and $D'\to C'$ be the pullbacks (via these embeddings) of the multiplication-by-$2$ maps on the Jacobians. W
Externí odkaz:
http://arxiv.org/abs/2402.08853
For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer-Manin obstructions. Given a Galois extension of the ground field one can consider similar sets over the
Externí odkaz:
http://arxiv.org/abs/2402.04441
Autor:
Voloch, José Felipe
We study some properties of the lattices defined as the kernel of the map $(a_1,\ldots, a_{q-1}) \mapsto \prod (1-c_ix)^{a_i} \in (\mathbb{F}_q[x]/(x^e))^*$, where $\mathbb{F}_q^* = \{c_1,\ldots,c_{q-1}\}$.
Comment: Main result is a special case
Comment: Main result is a special case
Externí odkaz:
http://arxiv.org/abs/2309.08903
Autor:
Creutz, Brendan, Voloch, José Felipe
We prove that the set of rational points on a nonisotrivial curves of genus at least 2 over a global function field is equal to the set of adelic points cut out by the Brauer-Manin obstruction.
Comment: With an appendix by Damian R\"ossler
Comment: With an appendix by Damian R\"ossler
Externí odkaz:
http://arxiv.org/abs/2308.13075
Autor:
Creutz, Brendan, Voloch, Jose Felipe
Publikováno v:
Ãpijournal de Géométrie Algébrique, Volume 8 (July 9, 2024) epiga:11483
Let $C$ and $D$ be smooth, proper and geometrically integral curves over a finite field $F$. Any morphism from $D$ to $C$ induces a morphism of their \'etale fundamental groups. The anabelian philosophy proposed by Grothendieck suggests that, when $C
Externí odkaz:
http://arxiv.org/abs/2306.04844
We obtain new bounds on short Weil sums over small multiplicative subgroups of prime finite fields which remain nontrivial in the range the classical Weil bound is already trivial. The method we use is a blend of techniques coming from algebraic geom
Externí odkaz:
http://arxiv.org/abs/2211.07739
Autor:
Booher, Jeremy, Bowden, Ross, Doliskani, Javad, Fouotsa, Tako Boris, Galbraith, Steven D., Kunzweiler, Sabrina, Merz, Simon-Philipp, Petit, Christophe, Smith, Benjamin, Stange, Katherine E., Ti, Yan Bo, Vincent, Christelle, Voloch, José Felipe, Weitkämper, Charlotte, Zobernig, Lukas
An important open problem in supersingular isogeny-based cryptography is to produce, without a trusted authority, concrete examples of "hard supersingular curves" that is, equations for supersingular curves for which computing the endomorphism ring i
Externí odkaz:
http://arxiv.org/abs/2205.00135