Zobrazeno 1 - 10
of 2 297
pro vyhledávání: '"Vladimir Vapnik"'
Autor:
Jose Taylor, Camillo
Publikováno v:
In Journal of the Franklin Institute July 2015 352(7):2579-2584
Publikováno v:
Health & Medicine Week; 11/15/2024, p1601-1601, 1p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Camillo J. Taylor
Publikováno v:
Journal of the Franklin Institute. 352:2579-2584
The Franklin Institute, Philadelphia, Pennsylvania, awards the 2012 Benjamin Franklin Medal in Computer and Cognitive Science to Professor Vladimir Vapnik for his fundamental contributions to our understanding of machine learning, which allows comput
Autor:
Alexey Chervonenkis
Publikováno v:
Statistical Learning and Data Science
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e22738c5fd61c7d242ebfd119a939790
https://doi.org/10.1201/b11429-7
https://doi.org/10.1201/b11429-7
Autor:
Shoesmith, E.
Publikováno v:
Journal of the Royal Statistical Society. Series D (The Statistician), 1984 Sep 01. 33(3), 324-324.
Externí odkaz:
https://www.jstor.org/stable/2988246
Autor:
Vladimir Vapnik
Publikováno v:
Automation and Remote Control. 80:1949-1975
Existing mathematical model of learning requires using training data find in a given subset of admissible function the function that minimizes the expected loss. In the paper this setting is called Second selection problem. Mathematical model of lear
Autor:
Vladimir Vapnik, Rauf Izmailov
Publikováno v:
Machine Learning. 108:381-423
This paper introduces a new learning paradigm, called Learning Using Statistical Invariants (LUSI), which is different from the classical one. In a classical paradigm, the learning machine constructs a classification rule that minimizes the probabili
Autor:
Vladimir Vapnik, Rauf Izmailov
Publikováno v:
Pattern Recognition. 119:108018
The paper is devoted to two problems: (1) reinforcement of SVM algorithms, and (2) justification of memorization mechanisms for generalization. (1) Current SVM algorithm was designed for the case when the risk for the set of nonnegative slack variabl
Autor:
Rauf Izmailov, Vladimir Vapnik
Publikováno v:
Annals of Mathematics and Artificial Intelligence. 81:3-19
The paper considers general machine learning models, where knowledge transfer is positioned as the main method to improve their convergence properties. Previous research was focused on mechanisms of knowledge transfer in the context of SVM framework;