Zobrazeno 1 - 10
of 57
pro vyhledávání: '"Vladimir Petrovich Platonov"'
Publikováno v:
Trudy Matematicheskogo Instituta imeni V.A. Steklova. 320:278-286
Исследуется проблема описания свободных от квадратов многочленов $f(x)$ нечетной степени с периодическим разложением $\sqrt {f(x)}$ в функцион
Autor:
Fedor Alekseevich Bogomolov, Фeдор Алексеевич Богомолов, Anatolii Moiseevich Vershik, Sergei Vladimirovich Vostokov, Sergey Olegovich Gorchinskiy, Alexander Borisovich Zheglov, Yuri Gennad'evich Zarhin, Sergei Vladimirovich Konyagin, Victor Stepanovich Kulikov, Yuri Valentinovich Nesterenko, Dmitri Olegovich Orlov, Denis Vasilievich Osipov, Ivan Alexandrovich Panin, Vladimir Petrovich Platonov, Vladimir Leonidovich Popov, Yuri Gennadievich Prokhorov, Aleksandr Leonidovich Smirnov
Publikováno v:
Uspekhi Matematicheskikh Nauk. 78:165-169
Publikováno v:
Математический сборник. 213:139-170
Получено полное описание полей $\mathbb K$, являющихся расширениями $\mathbb Q$ степени не более $3$, и кубических многочленов $f \in\mathbb K[x]$, для котор
Publikováno v:
Doklady Mathematics. 102:487-492
We obtain a complete description of cubic polynomials f over algebraic number fields $$\mathbb{K}$$ of degree $$3$$ over $$\mathbb{Q}$$ for which the continued fraction expansion of $$\sqrt f $$ in the field of formal power series $$\mathbb{K}((x))$$
Publikováno v:
Doklady Mathematics. 102:288-292
We obtain a complete description of fields $$\mathbb{K}$$ that are quadratic extensions of $$\mathbb{Q}$$ and of cubic polynomials $$f \in \mathbb{K}[x]$$ for which a continued fraction expansion of $$\sqrt f $$ in the field of formal power series $$
Publikováno v:
Doklady Mathematics. 100:440-444
For a field k of characteristic 0, up to a natural equivalence relation, it is proved that the number of nontrivial elliptic fields $$k(x)(\sqrt f )$$ with a periodic continued fraction expansion of $$\sqrt f \in k((x))$$ for which the corresponding
Publikováno v:
Доклады Академии наук. 486:280-286
This article proves the equivalence theorem for the following conditions: the periodicity of continued fractions of a generalized type for key elements hyperelliptic field L, the existence in the hyperelliptic field L of nontrivial S-units for sets S
Publikováno v:
Chebyshevskii sbornik. 20:246-258
Publikováno v:
Doklady Mathematics. 98:641-645
We prove the finiteness of the set of square-free polynomials f ∈ k[x] of odd degree distinct from 11 considered up to a natural equivalence relation for which the continued fraction expansion of the irrationality $$\sqrt {f\left( x \right)} $$ in
Publikováno v:
Doklady Mathematics. 98:430-434
We give a description of the cubic polynomials f(x) with coefficients in the quadratic number fields $$\mathbb{Q}(\sqrt{5})$$ and $$\mathbb{Q}(\sqrt{-15})$$ for which the continued fraction expansion of the irrationality $$\sqrt {f\left( x \right)} $