Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Vladimir Loncar"'
Autor:
Patrick Odagiu, Zhiqiang Que, Javier Duarte, Johannes Haller, Gregor Kasieczka, Artur Lobanov, Vladimir Loncar, Wayne Luk, Jennifer Ngadiuba, Maurizio Pierini, Philipp Rincke, Arpita Seksaria, Sioni Summers, Andre Sznajder, Alexander Tapper, Thea K Årrestad
Publikováno v:
Machine Learning: Science and Technology, Vol 5, Iss 3, p 035017 (2024)
Three machine learning models are used to perform jet origin classification. These models are optimized for deployment on a field-programmable gate array device. In this context, we demonstrate how latency and resource consumption scale with the inpu
Externí odkaz:
https://doaj.org/article/4541642a69904f4eb05a8f8a4651282e
Autor:
Elham E Khoda, Dylan Rankin, Rafael Teixeira de Lima, Philip Harris, Scott Hauck, Shih-Chieh Hsu, Michael Kagan, Vladimir Loncar, Chaitanya Paikara, Richa Rao, Sioni Summers, Caterina Vernieri, Aaron Wang
Publikováno v:
Machine Learning: Science and Technology, Vol 4, Iss 2, p 025004 (2023)
Recurrent neural networks have been shown to be effective architectures for many tasks in high energy physics, and thus have been widely adopted. Their use in low-latency environments has, however, been limited as a result of the difficulties of impl
Externí odkaz:
https://doaj.org/article/466e78a8486f42c9a5dabee5d438eddd
Autor:
Yutaro Iiyama, Gianluca Cerminara, Abhijay Gupta, Jan Kieseler, Vladimir Loncar, Maurizio Pierini, Shah Rukh Qasim, Marcel Rieger, Sioni Summers, Gerrit Van Onsem, Kinga Anna Wozniak, Jennifer Ngadiuba, Giuseppe Di Guglielmo, Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Mia Liu, Kevin Pedro, Nhan Tran, Edward Kreinar, Zhenbin Wu
Publikováno v:
Frontiers in Big Data, Vol 3 (2021)
Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering. An important domain for the application of these networks is the FGP
Externí odkaz:
https://doaj.org/article/c0766df513ec43ff8f6284d42859ca59
Autor:
null Elham E Khoda, null Dylan Rankin, null Rafael Teixeira de Lima, null Philip Harris, null Scott Hauck, null Shih-Chieh Hsu, null Michael Kagan, null Vladimir Loncar, null Chaitanya Paikara, null Richa Rao, null Sioni Paris Summers, null Caterina Vernieri, null Aaron Wang
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c3f0bdec5b7265e200eb41ac35708267
https://doi.org/10.1088/2632-2153/acc0d7/v2/response1
https://doi.org/10.1088/2632-2153/acc0d7/v2/response1
Autor:
Olivia Weng, Gabriel Marcano, Vladimir Loncar, Alireza Khodamoradi, Nojan Sheybani, Farinaz Koushanfar, Kristof Denolf, Javier Mauricio Duarte, Ryan Kastner
Publikováno v:
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays.
Autor:
Naif Tarafdar, Giuseppe Di Guglielmo, Philip C. Harris, Jeffrey D. Krupa, Vladimir Loncar, Dylan S. Rankin, Nhan Tran, Zhenbin Wu, Qianfeng Shen, Paul Chow
Publikováno v:
ACM Transactions on Reconfigurable Technology and Systems. 15:1-32
AIgean , pronounced like the sea, is an open framework to build and deploy machine learning (ML) algorithms on a heterogeneous cluster of devices (CPUs and FPGAs). We leverage two open source projects: Galapagos , for multi-FPGA deployment, and hls4m
Autor:
Elham E Khoda, Dylan Rankin, Rafael Teixeira de Lima, Philip Harris, Scott Hauck, Shih-Chieh Hsu, Michael Kagan, Vladimir Loncar, Chaitanya Paikara, Richa Rao, Sioni Summers, Caterina Vernieri, Aaron Wang
Recurrent neural networks have been shown to be effective architectures for many tasks in high energy physics, and thus have been widely adopted. Their use in low-latency environments has, however, been limited as a result of the difficulties of impl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32c09416e4d7fdfbb4a9a41df9ad42bc
http://cds.cern.ch/record/2816114
http://cds.cern.ch/record/2816114
Autor:
Nicolò Ghielmetti, Vladimir Loncar, Maurizio Pierini, Marcel Roed, Sioni Summers, Thea Aarrestad, Christoffer Petersson, Hampus Linander, Jennifer Ngadiuba, Kelvin Lin, Philip Harris
Publikováno v:
Machine Learning: Science and Technology, 3 (4)
In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network ar
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88109b235b4c3c628cd2f34015476534
http://cds.cern.ch/record/2839971
http://cds.cern.ch/record/2839971
Autor:
Adrian Alan Pol, Thea Aarrestad, Ekaterina Govorkova, Roi Halily, Anat Klempner, Tal Kopetz, Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Olya Sirkin, Sioni Summers
Publikováno v:
Machine Learning: Science and Technology, 3 (2)
We apply object detection techniques based on deep convolutional blocks to end-to-end jet identification and reconstruction tasks encountered at the CERN large hadron collider (LHC). Collision events produced at the LHC and represented as an image co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d433a2ab5a491d8f332742decb47725c
http://cds.cern.ch/record/2801371
http://cds.cern.ch/record/2801371
Autor:
Ekaterina Govorkova, Ema Puljak, Thea Aarrestad, Thomas James, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol, Nicolò Ghielmetti, Maksymilian Graczyk, Sioni Summers, Jennifer Ngadiuba, Thong Q. Nguyen, Javier Duarte, Zhenbin Wu
To study the physics of fundamental particles and their interactions, the Large Hadron Collider was constructed at CERN, where protons collide to create new particles measured by detectors. Collisions occur at a frequency of 40 MHz, and with an event
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d13d8cc6e26d0c67c4ca4433d085f267
http://cds.cern.ch/record/2779339
http://cds.cern.ch/record/2779339