Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Vladimir Karpukhin"'
Autor:
Vladimir Karpukhin, Barlas Oguz, Wen-tau Yih, Sebastian Riedel, Michael Sejr Schlichtkrull, Michael Lewis
Publikováno v:
ACL/IJCNLP (1)
Structured information is an important knowledge source for automatic verification of factual claims. Nevertheless, the majority of existing research into this task has focused on textual data, and the few recent inquiries into structured data have b
Autor:
Sergey Edunov, Wen-tau Yih, Danqi Chen, Vladimir Karpukhin, Sewon Min, Barlas Oguz, Patrick S. H. Lewis, Ledell Wu
Publikováno v:
EMNLP (1)
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4586e4a9f0e9488de8d1bb2d039be7a3
Autor:
Patrick S. H. Lewis, Nicola De Cao, Aleksandra Piktus, Yacine Jernite, Jean Maillard, Angela Fan, James Thorne, Vassilis Plachouras, Vladimir Karpukhin, Tim Rocktäschel, Sebastian Riedel, Majid Yazdani, Fabio Petroni
Publikováno v:
NAACL-HLT
Challenging problems such as open-domain question answering, fact checking, slot filling and entity linking require access to large, external knowledge sources. While some models do well on individual tasks, developing general models is difficult as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::858c48f1c93a18c525f01a73ceda1250
Publikováno v:
W-NUT@EMNLP
We consider the problem of making machine translation more robust to character-level variation at the source side, such as typos. Existing methods achieve greater coverage by applying subword models such as byte-pair encoding (BPE) and character-leve