Zobrazeno 1 - 10
of 126
pro vyhledávání: '"Vladimir Kadets"'
Autor:
Taras Banakh, Vladimir Kadets
Publikováno v:
Axioms, Vol 11, Iss 1, p 13 (2021)
Let A,X,Y be Banach spaces and A×X→Y, (a,x)↦ax be a continuous bilinear function, called a Banach action. We say that this action preserves unconditional convergence if for every bounded sequence (an)n∈ω in A and unconditionally convergent se
Externí odkaz:
https://doaj.org/article/d95f6abfe6c746ed8f0abc441c8ae102
Autor:
Óscar Roldán, Vladimir Kadets
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 116
Given a pointed metric space M, we study when there exist n-dimensional linear subspaces of $$\mathrm {Lip}_0(M)$$ Lip 0 ( M ) consisting of strongly norm-attaining Lipschitz functionals, for $$n\in {\mathbb {N}}$$ n ∈ N . We show that this is alwa
Autor:
Vladimir Kadets, Dmytro Seliutin
Publikováno v:
Bulletin of the Belgian Mathematical Society - Simon Stevin. 28
Publikováno v:
Journal of Mathematical Analysis and Applications. 471:38-52
We extend the result of B. Cascales et al. about expand-contract plasticity of the unit ball of strictly convex Banach space to those spaces whose unit sphere is the union of all its finite-dimensional polyhedral extreme subsets. We also extend the d
Publikováno v:
Journal of Mathematical Analysis and Applications. 509:125955
Autor:
Vladimir Kadets
We demonstrate the result stated in the title, thus answering an open question asked by Julio Becerra Guerrero, Gin\'es L\'opez-P\'erez and Abraham Rueda Zoca in J. Conv. Anal. \textbf{25}, no. 3 (2018).
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bb06df2ad57b6bd47b45e3c01acceb1a
Autor:
Vladimir Kadets, L. Golinskii
In 2000 V. Lomonosov suggested a counterexample to the complex version of the Bishop-Phelps theorem on modulus support functionals. We discuss the $c_0$-analog of that example and demonstrate that the set of sup-attaining functionals is non-trivial,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::73e3fce586cfe5064db387c45e90592a
Publikováno v:
Journal of Mathematical Analysis and Applications. 505:125652
For a Banach space X we demonstrate the equivalence of the following two properties: (1) X is B-convex (that is, possesses a nontrivial infratype), and (2) if F : [ 0 , 1 ] → 2 X ∖ { ∅ } is a multifunction with bounded values, convF denotes the
Publikováno v:
Canadian Journal of Mathematics. 71:1421-1443
We study approximation of operators between Banach spaces $X$ and $Y$ that nearly attain their norms in a given point by operators that attain their norms at the same point. When such approximations exist, we say that the pair $(X, Y)$ has the pointw