Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Vladimir Ignatenko"'
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 10357-10374 (2021)
Land cover (LC) mapping is essential for monitoring the environment and understanding the effects of human activities on it. Recent studies demonstrated successful applications of specific deep learning models to small-scale LC mapping tasks (e.g., w
Externí odkaz:
https://doaj.org/article/779aa9b48910447088b494dc772ba03e
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 10357-10374 (2021)
Scepanovic, S, Antropov, O, Laurila, P, Rauste, Y, Ignatenko, V & Praks, J 2021, ' Wide-Area Land Cover Mapping with Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models ', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10357-10374 . https://doi.org/10.1109/JSTARS.2021.3116094
Scepanovic, S, Antropov, O, Laurila, P, Rauste, Y, Ignatenko, V & Praks, J 2021, ' Wide-Area Land Cover Mapping with Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models ', IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 10357-10374 . https://doi.org/10.1109/JSTARS.2021.3116094
Land cover mapping is essential to monitoring the environment and understanding the effects of human activities on it. The automatic approaches to land cover mapping (i.e., image segmentation) mostly used traditional machine learning that requires he
Autor:
Ozan Dogan, Vladimir Ignatenko, Darren Muff, Leszek Lamentowski, Matthew Nottingham, Andrea Radius, Pierre Leprovost, Tino Seilonen
Publikováno v:
2022 IEEE Radar Conference (RadarConf22).
Autor:
Darren Muff, Vladimir Ignatenko, Ozan Dogan, Leszek Lamentowski, Pierre Leprovost, Matthew Nottingham, Andrea Radius, Tino Seilonen, Valentyn Tolpekin
Publikováno v:
2022 IEEE Radar Conference (RadarConf22).
Publikováno v:
IGARSS
The ICEYE constellation features the first operational mi-crosatellite based X-band SAR sensors suitable for all-weather day-and-night Earth Observation. ICEYE microsatellites feature an active phased array antenna with beam steering capabilities in
Autor:
Leszek Lamentowski, Darren Muff, Vladimir Ignatenko, Oleg Antropov, Pekka Laurila, Andrea Radius
Publikováno v:
Ignatenko, V, Laurila, P, Radius, A, Lamentowski, L, Antropov, O & Muff, D 2020, ICEYE Microsatellite SAR Constellation Status Update : Evaluation of First Commercial Imaging Modes . in 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 ., 9324531, IEEE Institute of Electrical and Electronic Engineers, pp. 3581-3584, IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Waikoloa, Hawaii, United States, 26/09/20 . https://doi.org/10.1109/IGARSS39084.2020.9324531
IGARSS
IGARSS
The ICEYE constellation features the first operational mi-crosatellite based X-band SAR sensors suitable for all-weather day-and-night Earth Observation. In this paper we report on the status of the ICEYE Constellation and describe the characteristic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa194cb0dccb4203044a9298078aac4a
http://arxiv.org/abs/2102.04545
http://arxiv.org/abs/2102.04545
Publikováno v:
Antropov, O, Rauste, Y, Šćepanović, S, Ignatenko, V, Lönnqvist, A & Praks, J 2020, Classification of Wide-Area SAR Mosaics : Deep Learning Approach for Corine Based Mapping of Finland Using Multitemporal Sentinel-1 Data . in 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 : Proceedings ., 9323855, IEEE Institute of Electrical and Electronic Engineers, IEEE International Geoscience and Remote Sensing Symposium Proceedings, pp. 4283-4286, IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Waikoloa, Hawaii, United States, 26/09/20 . https://doi.org/10.1109/IGARSS39084.2020.9323855
IGARSS
IGARSS
Here, we examine a deep learning approach to perform land cover classification using country-wide SAR mosaics compiled using multitemporal Sentinel-1 imagery. We capitalize on our earlier study [1], demonstrating the suitability of deep learning mode
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68d9d6760979fdabd03b31c0c2ea6e5a
https://cris.vtt.fi/en/publications/29d9187f-88c8-4836-bc03-10e13e9f85fb
https://cris.vtt.fi/en/publications/29d9187f-88c8-4836-bc03-10e13e9f85fb
Land cover mapping and monitoring are essential for understanding the environment and the effects of human activities on the environment. The automatic approaches to land cover mapping are predominantly based on the traditional machine learning that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8413b787e2c868b5e287cee639223dc6
https://doi.org/10.20944/preprints201909.0229.v1
https://doi.org/10.20944/preprints201909.0229.v1
Autor:
Rafal Modrzewski, Miska Kauppinen, Jaan Praks, Vladimir Ignatenko, Pekka Laurila, Oleg Antropov
Publikováno v:
Antropov, O, Praks, J, Kauppinen, M, Laurila, P, Ignatenko, V & Modrzewski, R 2018, Assessment of Operational Microsatellite Based SAR for Earth Observation Applications . in 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018 ., 8471324, IEEE Institute of Electrical and Electronic Engineers, 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018, Gran Canaria, Spain, 28/05/18 . https://doi.org/10.23919/URSI-AT-RASC.2018.8471324
Space assets have become more affordable due to miniaturization of sensor and satellite platform technology, which allows significant reduction of launch and development costs. The first wave of new, radically smaller EO (Earth Observation) satellite