Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Vladimir Georgescu"'
Autor:
Emilia TITAN, Vladimir GEORGESCU
Publikováno v:
Revista Română de Statistică, Vol 61, Iss 02, Pp 45-59 (2013)
The purpose of the article is to illustrate the importance of the output gap in analysing macroeconomic stability in general and business cycle dynamics in particular. Ten EU countries are considered, with five old members and five new members. For a
Externí odkaz:
https://doaj.org/article/4b518eb5a394495fb9f2325e4668a97b
Autor:
Mondher Damak, Vladimir Georgescu
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 04, Pp 51-69 (2000)
For each finite dimensional real vector space X we construct a C*-algebra A graded by the lattice of all subspaces of X and we compute its quotient with respect to the algebra of compact operators. This allows one to describe the essential spectrum a
Externí odkaz:
https://doaj.org/article/1b84ff821d00494e90dc5645cf424af5
Autor:
Vladimir Georgescu, Andrei Iftimovici
Publikováno v:
Journal of Functional Analysis. 284:109867
Autor:
Jan Dereziński, Vladimir Georgescu
Publikováno v:
Annales Henri Poincaré. 21:1947-2008
We discuss realizations of $$L:=-\partial _x^2+V(x)$$L:=-∂x2+V(x) as closed operators on $$L^2]a,b[$$L2]a,b[, where V is complex, locally integrable and may have an arbitrary behavior at (finite or infinite) endpoints a and b. The main tool of our
Autor:
Vladimir Georgescu, Jan Dereziński
We consider the Schrödinger operator on the halfline with the potential$$(m^2-\frac{1}{4})\frac{1}{x^2}$$(m2-14)1x2, often called the Bessel operator. We assume thatmis complex. We study the domains of various closed homogeneous realizations of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::922a08414a1890f9ee5ea4f44a42f8e3
http://arxiv.org/abs/2101.01001
http://arxiv.org/abs/2101.01001
Publikováno v:
Journal of the European Mathematical Society. 19:2371-2444
We show asymptotic completeness for a class of superradiant Klein-Gordon equations. Our results are applied to the Klein-Gordon equation on the De Sitter Kerr metric with small angular momentum of the black hole. For this equation we obtain asymptoti
Publikováno v:
Journal of Spectral Theory. 5:113-192
We study in this paper an abstract class of Klein-Gordon equations: \[ \p_{t}^{2}\phi(t)- 2\i k \p_{t}\phi(t)+ h \phi(t)=0, \] where $\phi: \rr\to \cH$, $\cH$ is a (complex) Hilbert space, and $h$, $k$ are self-adjoint, resp. symmetric operators on $
Autor:
Vladimir, Georgescu1 vladimirgeorgescu@yahoo.com
Publikováno v:
Ovidius University Annals, Series Economic Sciences. 2014, Vol. 14 Issue 1, p125-130. 6p.
Publikováno v:
Journal of Functional Analysis. 265:3245-3304
We prove in this paper resolvent estimates for the boundary values of resolvents of selfadjoint operators on a Krein space: if $H$ is a selfadjoint operator on a Krein space $\cH$, equipped with the Krein scalar product $\langle \cdot| \cdot \rangle$
Autor:
Emilia, Ţiţan1 titan_emilia@yahoo.com, Vladimir, Georgescu1 vladimirgeorgescu@yahoo.com
Publikováno v:
Ovidius University Annals, Series Economic Sciences. 2012, Vol. 12 Issue 2, p75-79. 5p.